Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Contribution of Edge Structure Towards Enhanced Thermal Stability of Graphene-Based Materials
Corresponding Author(s) : Man Singh
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
An advanced approach for direct covalent functionalization (DCF) of graphene-based material has been developed. The functionalized graphene oxide (f-GO) has been prepared with the robust sonochemical approach with complete deletion of hazardous acylating and coupling reagents. The as-prepared f-GO was extensively characterized with various analytical techniques like near edge X-ray absorption fine structure (NEXAFS), 13C SSNMR, HRXPS, HRTEM, XRD, Raman, AFM, TGA, DSC and FTIR. An investigation of thermal applications of graphene-based materials has been confined due to the conventional thermal instability of graphene oxide (GO). However, DCF through contribution of C_K edges of graphene oxide, have confirmed the significance of f-GO towards enhanced thermal stability. The total percentage weight loss in TG-DTA has confirmed an enhanced thermal stability of f-GO. The contribution of edge structure towards enhanced thermal stability has confirmed with near edge XAFS spectroscopy. The participation of various atomic domains has synergistically contributed towards enhanced thermal stability of f-GO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Ruess, Monatsh. Chem., 76, 381 (1947); https://doi.org/10.1007/BF00898987.
- A. Clause, R. Plass, H.-P. Boehm and U. Hofmann, Anorg. Allg. Chem, 291, 205 (1957); https://doi.org/10.1002/zaac.19572910502.
- W. Scholz and H.P. Boehm, Anorg. Allg. Chem., 369, 327 (1969); https://doi.org/10.1002/zaac.19693690322.
- T. Nakajima, A. Mabuchi and R. Hagiwara, Carbon, 26, 357 (1988); https://doi.org/10.1016/0008-6223(88)90227-8.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Z. Jiang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849.
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996.
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y.
- H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature, 318, 162 (1985); https://doi.org/10.1038/318162a0.
- S.P. Economopoulos, G. Rotas, N. Tagmatarchis, H. Shinohara and Y. Miyata, ACS Nano, 4, 7499 (2010); https://doi.org/10.1021/nn101735e.
- B. Shen, W. Zhai, D. Lu, J. Wang and W. Zheng, RSC Adv., 2, 4713 (2012); https://doi.org/10.1039/c2ra01098d.
- S.S. Maktedar, S.S. Mehetre, M. Singh and R.K. Kale, Ultrason. Sonochem., 21, 1407 (2014); https://doi.org/10.1016/j.ultsonch.2014.02.022.
- H. Xu and K.S. Suslick, J. Am. Chem. Soc., 133, 9148 (2011); https://doi.org/10.1021/ja200883z.
- V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril and K.S. Kim, Chem. Rev., 112, 6156 (2012); https://doi.org/10.1021/cr3000412.
- A. Hirsch, J.M. Englert and F. Hauke, Acc. Chem. Res., 46, 87 (2013); https://doi.org/10.1021/ar300116q.
- D.W. Boukhvalov and M.I. Katsnelson, Nano Lett., 8, 4373 (2008); https://doi.org/10.1021/nl802234n.
- J.X. Zhao, H.X. Wang, B. Gao, X.G. Wang, Q.H. Cai and X.Z. Wang, J. Mol. Model., 18, 2861 (2012); https://doi.org/10.1007/s00894-011-1309-8.
- E.U. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim and S.O. Kim, J. Mater. Chem., 20, 1907 (2010); https://doi.org/10.1039/b919074k.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
- D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); https://doi.org/10.1038/nnano.2007.451.
- V.C. Tung, M.J. Allen, Y. Yang and R.B. Kaner, Nat. Nanotechnol., 4, 25 (2009); https://doi.org/10.1038/nnano.2008.329.
- S.S. Mehetre, S.S. Maktedar, M. Singh and R.K. Kale, Appl. Surf. Sci., 366, 514 (2016); https://doi.org/10.1016/j.apsusc.2016.01.108.
- S.S. Maktedar, S.S. Mehetre, G. Avashthi, M. Singh, T. Jayaraman and M. Jagannatha, In Proceedings of International Conference on Recent Advances in Material and Chemical Sciences (ICRAMCS), Bundelkhand University, Jhansi, India, pp 1-4 (2016).
- M. Mamlouk, S.M.S. Kumar, P. Gouerec and K. Scott, J. Power Sources, 196, 7594 (2011); https://doi.org/10.1016/j.jpowsour.2011.04.045.
- N.A. Anastasijevic, V.B. Vesovic and R.R. Adzic, J. Electroanal. Chem., 229, 305 (1987); https://doi.org/10.1016/0022-0728(87)85148-3.
- K. Krishnamoorthy, R. Mohan and S.J. Kim, Appl. Phys. Lett., 98, 244101 (2011); https://doi.org/10.1063/1.3599453.
- B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang and W. Xu, J. Power Sources, 198, 423 (2012); https://doi.org/10.1016/j.jpowsour.2011.09.074.
- Z. Liu, J.T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008); https://doi.org/10.1021/ja803688x.
- O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x.
- X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); https://doi.org/10.1007/s12274-008-8021-8.
- H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
References
G. Ruess, Monatsh. Chem., 76, 381 (1947); https://doi.org/10.1007/BF00898987.
A. Clause, R. Plass, H.-P. Boehm and U. Hofmann, Anorg. Allg. Chem, 291, 205 (1957); https://doi.org/10.1002/zaac.19572910502.
W. Scholz and H.P. Boehm, Anorg. Allg. Chem., 369, 327 (1969); https://doi.org/10.1002/zaac.19693690322.
T. Nakajima, A. Mabuchi and R. Hagiwara, Carbon, 26, 357 (1988); https://doi.org/10.1016/0008-6223(88)90227-8.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Z. Jiang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849.
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y.
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature, 318, 162 (1985); https://doi.org/10.1038/318162a0.
S.P. Economopoulos, G. Rotas, N. Tagmatarchis, H. Shinohara and Y. Miyata, ACS Nano, 4, 7499 (2010); https://doi.org/10.1021/nn101735e.
B. Shen, W. Zhai, D. Lu, J. Wang and W. Zheng, RSC Adv., 2, 4713 (2012); https://doi.org/10.1039/c2ra01098d.
S.S. Maktedar, S.S. Mehetre, M. Singh and R.K. Kale, Ultrason. Sonochem., 21, 1407 (2014); https://doi.org/10.1016/j.ultsonch.2014.02.022.
H. Xu and K.S. Suslick, J. Am. Chem. Soc., 133, 9148 (2011); https://doi.org/10.1021/ja200883z.
V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril and K.S. Kim, Chem. Rev., 112, 6156 (2012); https://doi.org/10.1021/cr3000412.
A. Hirsch, J.M. Englert and F. Hauke, Acc. Chem. Res., 46, 87 (2013); https://doi.org/10.1021/ar300116q.
D.W. Boukhvalov and M.I. Katsnelson, Nano Lett., 8, 4373 (2008); https://doi.org/10.1021/nl802234n.
J.X. Zhao, H.X. Wang, B. Gao, X.G. Wang, Q.H. Cai and X.Z. Wang, J. Mol. Model., 18, 2861 (2012); https://doi.org/10.1007/s00894-011-1309-8.
E.U. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim and S.O. Kim, J. Mater. Chem., 20, 1907 (2010); https://doi.org/10.1039/b919074k.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); https://doi.org/10.1038/nnano.2007.451.
V.C. Tung, M.J. Allen, Y. Yang and R.B. Kaner, Nat. Nanotechnol., 4, 25 (2009); https://doi.org/10.1038/nnano.2008.329.
S.S. Mehetre, S.S. Maktedar, M. Singh and R.K. Kale, Appl. Surf. Sci., 366, 514 (2016); https://doi.org/10.1016/j.apsusc.2016.01.108.
S.S. Maktedar, S.S. Mehetre, G. Avashthi, M. Singh, T. Jayaraman and M. Jagannatha, In Proceedings of International Conference on Recent Advances in Material and Chemical Sciences (ICRAMCS), Bundelkhand University, Jhansi, India, pp 1-4 (2016).
M. Mamlouk, S.M.S. Kumar, P. Gouerec and K. Scott, J. Power Sources, 196, 7594 (2011); https://doi.org/10.1016/j.jpowsour.2011.04.045.
N.A. Anastasijevic, V.B. Vesovic and R.R. Adzic, J. Electroanal. Chem., 229, 305 (1987); https://doi.org/10.1016/0022-0728(87)85148-3.
K. Krishnamoorthy, R. Mohan and S.J. Kim, Appl. Phys. Lett., 98, 244101 (2011); https://doi.org/10.1063/1.3599453.
B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang and W. Xu, J. Power Sources, 198, 423 (2012); https://doi.org/10.1016/j.jpowsour.2011.09.074.
Z. Liu, J.T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008); https://doi.org/10.1021/ja803688x.
O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x.
X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); https://doi.org/10.1007/s12274-008-8021-8.
H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757.
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368