Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Analytical Applications of Novel Electroactive Sensor based on Titanium(IV) Tungstovanadate for Determination of Cadmium
Corresponding Author(s) : Pernita Dogra
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
The novel exchanger titanium(IV) tungstovanadate has been prepared by sol-gel method. The characterization of sensor has been done with FTIR, SEM, EDS and X-ray diffraction studies. Membranes containing different composition of electroactive material and epoxy resin as binder were prepared. The membrane with 60 % electroactive material and 40 % epoxy binder gives the best response. Potentiometric result shows that the sensor can be used in the concentration range of 10-7 to 10-1 M Cd(II) ions with a near Nernstian slope of 21 mV/decade. The electrode shows a fast response time of < 10 sec. The working pH range of the electrode is 2.62 to 8.66 and it behaves well in the partially non aqueous medium upto 30 % concentration of ethanol, methanol and acetone. Fixed interference method was used for determining the selectivity coefficient with respect to different metal ions like Pb2+, Cr3+, La2+, Co2+, Hg2+, As3+, Cu2+, Ni2+, Mn2+, Sm3+ etc. and effect of internal solution was also studied. The developed sensor can be used as an indicator electrode in the potentiometric titration of Cd(II) against EDTA and oxalic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.H. Wedepohl, Geochim. Cosmochim. Acta, 59, 1217 (1995); https://doi.org/10.1016/0016-7037(95)00038-2.
- M.O. Roll, Geological Survey- Mineral Commodity Summaries, USA (2012).
- L. Friberg, Annu. Rev. Public Health, 4, 367 (1983); https://doi.org/10.1146/annurev.pu.04.050183.002055.
- G.F. Nordberg, K. Nogawa, M. Nordberg, L. Friberg and B.M. Fowler, Handbook on the Toxicology of Metals, Academic Press, edn 3, p. 445 (2007).
- D.R. Abernethy, A.J. De Stefano, T.L. Cecil, K. Zaidi and R.L. Williams, Pharm. Res., 27, 750 (2010); https://doi.org/10.1007/s11095-010-0080-3.
- M. Nordberg and G.F. Nordberg, Heavy Metals in the Environment, Chap. 8, p. 231 (2002).
- A. Buha, Z. Bulat and D. Dukic-Cosic and V. Matovic, Arch. Ind. Hygiene Toxicol., 62, 65 (2011); 10.2478/10004-1254-63-2012-2217
- R.C. Patra, A.K. Rautray and D. Swarup, Vet. Med. Int., Article ID 457327 (2011); https://doi.org/10.4061/2011/457327.
- A. Cuypers, M. Plusquin, T. Remans, M. Jozefczak, E. Keunen, H. Gielen, K. Opdenakker, A.R. Nair, E. Munters, T.J. Artois, T. Nawrot, J. Vangronsveld and K. Smeets, Biometals, 23, 927 (2010); https://doi.org/10.1007/s10534-010-9329-x.
- M. Abdulla and J. Chmielnicka, Biol. Trace Elem. Res., 23, 25 (1989); https://doi.org/10.1007/BF02917176.
- J.M. Moulis, Biometals, 23, 877 (2010); https://doi.org/10.1007/s10534-010-9336-y.
- G.S. Shukla and R.L. Singhal, Can. J. Physiol. Pharmacol., 62, 1015 (1984); https://doi.org/10.1139/y84-171.
- A. Schauder, A. Avital and Z. Malik, J. Environ. Pathol. Toxicol. Oncol., 29, 137 (2010); https://doi.org/10.1615/JEnvironPatholToxicolOncol.v29.i2.70.
- G. Cannino, E. Ferruggia, C. Luparello and A.M. Rinaldi, Mitochondrion, 9, 377 (2009); https://doi.org/10.1016/j.mito.2009.08.009.
- F. Thevenod, Nephron, 93, 87 (2003); https://doi.org/10.1159/000070241.
- M.L. Robles-Osorio and E. Sabath, Nefrologia, 36, 577 (2016); https://doi.org/10.1016/j.nefro.2016.05.004.
- E.F. Madden and B.A. Fowler, Drug Chem. Toxicol., 23, 1 (2000); https://doi.org/10.1081/DCT-100100098.
- Y. Fujiwara, J.Y. Lee, M. Tokumoto and M. Satoh, Biol. Pharm. Bull., 35, 1892 (2012); https://doi.org/10.1248/bpb.b212014.
- A. Akesson, T. Lundh, M. Vahter, P. Bjellerup, J. Lidfeldt, C. Nerbrand, G. Samsioe, U. Strömberg and S. Skerfving, Environ. Health Perspect., 113, 1627 (2005); https://doi.org/10.1289/ehp.8033.
- T. Kjellstrom, IARC Sci. Publ., 118, 301 (1992).
- E.R. Youness, N.A. Mohammed and F.A. Morsy, Toxicol. Mech. Methods, 22, 560 (2012); https://doi.org/10.3109/15376516.2012.702796.
- M. Sughis, J. Penders, V. Haufroid, B. Nemery and T.S. Nawrot, Environ. Health, 10, 104 (2011); https://doi.org/10.1186/1476-069X-10-104.
- M.V. Varoni, D. Palomba, S. Gianorso and V. Anania, Vet. Res. Commun., 27, 807 (2003); https://doi.org/10.1023/B:VERC.0000014277.06785.6f.
- S. Abu-Hayyeh, M. Sian, K.G. Jones, A. Manuel and J.T. Powell, Arterioscler. Thromb. Vasc. Biol., 21, 863 (2001); https://doi.org/10.1161/01.ATV.21.5.863.
- W.C. Prozialeck, J.R. Edwards and J.M. Woods, Life Sci., 79, 1493 (2006); https://doi.org/10.1016/j.lfs.2006.05.007.
- M. Ohsawa, Yakugaku Zasshi, 129, 305 (2009); https://doi.org/10.1248/yakushi.129.305.
- M. Fortier, F. Omara, J. Bernier, P. Brousseau and M. Fournier, J. Toxicol. Environ. Health, 71, 1327 (2008); https://doi.org/10.1080/15287390802240918.
- S.A. Nabi and M. Naushad, Chem. Eng. J., 158, 100 (2010); https://doi.org/10.1016/j.cej.2009.12.011.
- M. El-Naggar, E.S. Zakaria, I.M. Ali, M. Khalil and M.F. El-Shahat, Arab. J. Chem., 5, 109 (2012); https://doi.org/10.1016/j.arabjc.2010.09.028.
- A.A. Khan, M. Khalid and U. Baig, React. Funct. Polym., 70, 849 (2010); https://doi.org/10.1016/j.reactfunctpolym.2010.07.020.
- E.S. Zakaria, I.M. Ali and I.M. El-Naggar, Colloids Surf A, 210, 33 (2002); https://doi.org/10.1016/S0927-7757(02)00216-9.
- M. Qureshi and V. Kumar, Chromatogr. J., 62, 431 (1971); https://doi.org/10.1016/S0021-9673(00)91395-5.
- Z.M. Siddiqi and D. Pathania, Chromatogr. J., 987, 147 (2003); https://doi.org/10.1016/S0021-9673(02)01659-X.
- S.A. Nabi, A.H. Shalla, A.M. Khan and S.A. Ganie, Colloids Surf A, 302, 241 (2007); https://doi.org/10.1016/j.colsurfa.2007.02.034.
- M. Qureshi and S.A. Nabi, J. Inorg. Nucl. Chem., 32, 2059 (1970); https://doi.org/10.1016/0022-1902(70)80614-5.
- H.K. Sharma, P. Dogra, A. Kumar and F. Koohyar, Quim. Nova, 37, 1324 (2014); https://doi.org/10.5935/0100-4042.20140198.
- H.K. Sharma, P. Dogra and N. Sharma, Res. J. Chem. Environ., 15, 897 (2011).
- H.K. Sharma and N. Sharma, E-J. Chem., 6, 1139 (2009); https://doi.org/10.1155/2009/301016.
- S.K. Mittal, R. Kumar, P. Dogra and H.K. Sharma, Res. J. Chem. Environ., 11, 47 (2007).
- K.S. Harish, V. Neha and J.K. Kapoor, E-J. Chem., 8, 155 (2011); https://doi.org/10.1155/2011/358039.
- E. Bakker, Electroanalysis, 9, 7 (1997); https://doi.org/10.1002/elan.1140090103.
- H.K. Sharma and P. Dogra, Am. Chem. Sci. J., 4, 457 (2014); https://doi.org/10.9734/ACSJ/2014/5527.
- C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, p. 353 (1963).
- J.R.S. Brownson, M.I. Tejedor-Tejedor and M.A. Anderson, Chem. Mater., 17, 6304 (2005); https://doi.org/10.1021/cm051568f.
- Y. Gao, Y. Masuda, W.S. Seo, H. Ohta and K. Koumoto, Ceram. Int., 30, 1365 (2004); https://doi.org/10.1016/j.ceramint.2003.12.105.
- G.V. Jere and C.C. Patel, Can. J. Rev. Chem. Rev. Can. Chim., 40, 1576 (1962); https://doi.org/10.1139/v62-238.
- T. Busani and R A B. Devine, Semicond. Sci. Technol., 20, 870 (2005); https://doi.org/10.1088/0268-1242/20/8/043.
- D.P. Padiyan, S.J. Ethilton and R. Murugesan, Phys. Status Solidi (a), 185, 231 (2001); https://doi.org/10.1002/1521-396X(200106)185:2<231::AIDPSSA231>3.0.CO;2-8.
- C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, Inorg. Chem., 22, 207 (1983); https://doi.org/10.1021/ic00144a006.
- G. Alberti, P. Cardini-Galli, U. Costantino and E. Torracca, J. Inorg. Nucl. Chem., 29, 571 (1967); https://doi.org/10.1016/0022-1902(67)80063-0.
- H.K. Sharma and N. Sharma, Int. Res. J. Pure Appl. Chem., 4, 118 (2014); https://doi.org/10.9734/IRJPAC/2014/4347.
- R. Kumar, H.K. Sharma and P. Dogra, Int. J. Environ. Anal. Chem., 91, 280 (2011); https://doi.org/10.1080/03067310903278528.
- Y. Umezawa, K. Umezawa and H. Sato, Pure Appl. Chem., 67, 507 (1995); https://doi.org/10.1351/pac199567030507
References
K.H. Wedepohl, Geochim. Cosmochim. Acta, 59, 1217 (1995); https://doi.org/10.1016/0016-7037(95)00038-2.
M.O. Roll, Geological Survey- Mineral Commodity Summaries, USA (2012).
L. Friberg, Annu. Rev. Public Health, 4, 367 (1983); https://doi.org/10.1146/annurev.pu.04.050183.002055.
G.F. Nordberg, K. Nogawa, M. Nordberg, L. Friberg and B.M. Fowler, Handbook on the Toxicology of Metals, Academic Press, edn 3, p. 445 (2007).
D.R. Abernethy, A.J. De Stefano, T.L. Cecil, K. Zaidi and R.L. Williams, Pharm. Res., 27, 750 (2010); https://doi.org/10.1007/s11095-010-0080-3.
M. Nordberg and G.F. Nordberg, Heavy Metals in the Environment, Chap. 8, p. 231 (2002).
A. Buha, Z. Bulat and D. Dukic-Cosic and V. Matovic, Arch. Ind. Hygiene Toxicol., 62, 65 (2011); 10.2478/10004-1254-63-2012-2217
R.C. Patra, A.K. Rautray and D. Swarup, Vet. Med. Int., Article ID 457327 (2011); https://doi.org/10.4061/2011/457327.
A. Cuypers, M. Plusquin, T. Remans, M. Jozefczak, E. Keunen, H. Gielen, K. Opdenakker, A.R. Nair, E. Munters, T.J. Artois, T. Nawrot, J. Vangronsveld and K. Smeets, Biometals, 23, 927 (2010); https://doi.org/10.1007/s10534-010-9329-x.
M. Abdulla and J. Chmielnicka, Biol. Trace Elem. Res., 23, 25 (1989); https://doi.org/10.1007/BF02917176.
J.M. Moulis, Biometals, 23, 877 (2010); https://doi.org/10.1007/s10534-010-9336-y.
G.S. Shukla and R.L. Singhal, Can. J. Physiol. Pharmacol., 62, 1015 (1984); https://doi.org/10.1139/y84-171.
A. Schauder, A. Avital and Z. Malik, J. Environ. Pathol. Toxicol. Oncol., 29, 137 (2010); https://doi.org/10.1615/JEnvironPatholToxicolOncol.v29.i2.70.
G. Cannino, E. Ferruggia, C. Luparello and A.M. Rinaldi, Mitochondrion, 9, 377 (2009); https://doi.org/10.1016/j.mito.2009.08.009.
F. Thevenod, Nephron, 93, 87 (2003); https://doi.org/10.1159/000070241.
M.L. Robles-Osorio and E. Sabath, Nefrologia, 36, 577 (2016); https://doi.org/10.1016/j.nefro.2016.05.004.
E.F. Madden and B.A. Fowler, Drug Chem. Toxicol., 23, 1 (2000); https://doi.org/10.1081/DCT-100100098.
Y. Fujiwara, J.Y. Lee, M. Tokumoto and M. Satoh, Biol. Pharm. Bull., 35, 1892 (2012); https://doi.org/10.1248/bpb.b212014.
A. Akesson, T. Lundh, M. Vahter, P. Bjellerup, J. Lidfeldt, C. Nerbrand, G. Samsioe, U. Strömberg and S. Skerfving, Environ. Health Perspect., 113, 1627 (2005); https://doi.org/10.1289/ehp.8033.
T. Kjellstrom, IARC Sci. Publ., 118, 301 (1992).
E.R. Youness, N.A. Mohammed and F.A. Morsy, Toxicol. Mech. Methods, 22, 560 (2012); https://doi.org/10.3109/15376516.2012.702796.
M. Sughis, J. Penders, V. Haufroid, B. Nemery and T.S. Nawrot, Environ. Health, 10, 104 (2011); https://doi.org/10.1186/1476-069X-10-104.
M.V. Varoni, D. Palomba, S. Gianorso and V. Anania, Vet. Res. Commun., 27, 807 (2003); https://doi.org/10.1023/B:VERC.0000014277.06785.6f.
S. Abu-Hayyeh, M. Sian, K.G. Jones, A. Manuel and J.T. Powell, Arterioscler. Thromb. Vasc. Biol., 21, 863 (2001); https://doi.org/10.1161/01.ATV.21.5.863.
W.C. Prozialeck, J.R. Edwards and J.M. Woods, Life Sci., 79, 1493 (2006); https://doi.org/10.1016/j.lfs.2006.05.007.
M. Ohsawa, Yakugaku Zasshi, 129, 305 (2009); https://doi.org/10.1248/yakushi.129.305.
M. Fortier, F. Omara, J. Bernier, P. Brousseau and M. Fournier, J. Toxicol. Environ. Health, 71, 1327 (2008); https://doi.org/10.1080/15287390802240918.
S.A. Nabi and M. Naushad, Chem. Eng. J., 158, 100 (2010); https://doi.org/10.1016/j.cej.2009.12.011.
M. El-Naggar, E.S. Zakaria, I.M. Ali, M. Khalil and M.F. El-Shahat, Arab. J. Chem., 5, 109 (2012); https://doi.org/10.1016/j.arabjc.2010.09.028.
A.A. Khan, M. Khalid and U. Baig, React. Funct. Polym., 70, 849 (2010); https://doi.org/10.1016/j.reactfunctpolym.2010.07.020.
E.S. Zakaria, I.M. Ali and I.M. El-Naggar, Colloids Surf A, 210, 33 (2002); https://doi.org/10.1016/S0927-7757(02)00216-9.
M. Qureshi and V. Kumar, Chromatogr. J., 62, 431 (1971); https://doi.org/10.1016/S0021-9673(00)91395-5.
Z.M. Siddiqi and D. Pathania, Chromatogr. J., 987, 147 (2003); https://doi.org/10.1016/S0021-9673(02)01659-X.
S.A. Nabi, A.H. Shalla, A.M. Khan and S.A. Ganie, Colloids Surf A, 302, 241 (2007); https://doi.org/10.1016/j.colsurfa.2007.02.034.
M. Qureshi and S.A. Nabi, J. Inorg. Nucl. Chem., 32, 2059 (1970); https://doi.org/10.1016/0022-1902(70)80614-5.
H.K. Sharma, P. Dogra, A. Kumar and F. Koohyar, Quim. Nova, 37, 1324 (2014); https://doi.org/10.5935/0100-4042.20140198.
H.K. Sharma, P. Dogra and N. Sharma, Res. J. Chem. Environ., 15, 897 (2011).
H.K. Sharma and N. Sharma, E-J. Chem., 6, 1139 (2009); https://doi.org/10.1155/2009/301016.
S.K. Mittal, R. Kumar, P. Dogra and H.K. Sharma, Res. J. Chem. Environ., 11, 47 (2007).
K.S. Harish, V. Neha and J.K. Kapoor, E-J. Chem., 8, 155 (2011); https://doi.org/10.1155/2011/358039.
E. Bakker, Electroanalysis, 9, 7 (1997); https://doi.org/10.1002/elan.1140090103.
H.K. Sharma and P. Dogra, Am. Chem. Sci. J., 4, 457 (2014); https://doi.org/10.9734/ACSJ/2014/5527.
C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, p. 353 (1963).
J.R.S. Brownson, M.I. Tejedor-Tejedor and M.A. Anderson, Chem. Mater., 17, 6304 (2005); https://doi.org/10.1021/cm051568f.
Y. Gao, Y. Masuda, W.S. Seo, H. Ohta and K. Koumoto, Ceram. Int., 30, 1365 (2004); https://doi.org/10.1016/j.ceramint.2003.12.105.
G.V. Jere and C.C. Patel, Can. J. Rev. Chem. Rev. Can. Chim., 40, 1576 (1962); https://doi.org/10.1139/v62-238.
T. Busani and R A B. Devine, Semicond. Sci. Technol., 20, 870 (2005); https://doi.org/10.1088/0268-1242/20/8/043.
D.P. Padiyan, S.J. Ethilton and R. Murugesan, Phys. Status Solidi (a), 185, 231 (2001); https://doi.org/10.1002/1521-396X(200106)185:2<231::AIDPSSA231>3.0.CO;2-8.
C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, Inorg. Chem., 22, 207 (1983); https://doi.org/10.1021/ic00144a006.
G. Alberti, P. Cardini-Galli, U. Costantino and E. Torracca, J. Inorg. Nucl. Chem., 29, 571 (1967); https://doi.org/10.1016/0022-1902(67)80063-0.
H.K. Sharma and N. Sharma, Int. Res. J. Pure Appl. Chem., 4, 118 (2014); https://doi.org/10.9734/IRJPAC/2014/4347.
R. Kumar, H.K. Sharma and P. Dogra, Int. J. Environ. Anal. Chem., 91, 280 (2011); https://doi.org/10.1080/03067310903278528.
Y. Umezawa, K. Umezawa and H. Sato, Pure Appl. Chem., 67, 507 (1995); https://doi.org/10.1351/pac199567030507