Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physio-Chemical Properties of Piperazinediium bis(4-Nitrophenolate)dihydrate: A Non-linear Optical Crystal
Corresponding Author(s) : D. Jayalakshmi
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
Good quality single crystals of piperazinediium bis(4-nitrophenolate)dihydrate (PBPNPD) have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in triclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR spectrum. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 329 nm Thermal stability of the crystal was examined by recording the TGA/DTA curve. The dielectric studies were performed. The mechanical properties of the crystal were estimated by Vickers hardness test. The relative second harmonic efficiency (non-linear optical) of the compound is found to be 2.4 times greater than that of potassium dihydrogen phosphate (KDP). The laser damage threshold (LDT) for the grown crystal were measured as 9.43 GW/cm2 with Nd:YAG laser assembly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Sethuraman, R.R. Babu, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Spectrochim. Acta A, 66, 707 (2007); https://doi.org/10.1016/j.saa.2006.04.020.
- A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystollagr., 32, 115 (1999); https://doi.org/10.1107/S0021889898007717.
- D. Havlicek, V. Chudoba, I. Nemec, I. Cisarova and Z. Micka, J. Mol. Struct., 606, 101 (2002); https://doi.org/10.1016/S0022-2860(01)00857-2.
- T. Eicher, S. Hauptmann, The Chemisty of Hetrocycles, G. Thieme Verlag, Stuttgard (1995).
- P.H. Stahl and C.G. Wermuth, Handbook of Pharmaceutical Salts Properties, Selection and Use, Wiley-VCh, Weinheim (2002).
- J.D. Abraham, Burger’s Medical Chemistry and Drug Discovery, Wiley- Interscience, Hoboken, NY (2003).
- A. Parkin, I.D.H. Oswald and S. Parsons, Acta Crystallogr. B, 60, 219 (2004); https://doi.org/10.1107/S0108768104003672.
- J.L. Bredas, C. Adant, P. Tackx, A. Persoons and B.M. Pierce, Chem. Rev., 94, 243 (1994); https://doi.org/10.1021/cr00025a008.
- P.V. Metha, N. Tripathi and S.K. Kumar, Chalcogenide Lett., 2, 39 (2005).
- N.L. Allinger, J.G.D. Carpenter and F.M. Karkowski, Tetrahedron Lett., 5, 3345 (1964); https://doi.org/10.1016/0040-4039(64)83097-5.
- A. Parkin, I.D.H. Oswald and S. Parsons, Acta Crystallogr., 60, 219 (2004); https://doi.org/10.1107/S0108768104003672.
- A.M. Belostotskii, H.E. Gottlieb, P. Aped and A. Hassner, Chem. Eur. J., 5, 449 (1999); https://doi.org/10.1002/(SICI)1521-3765(19990201)5:2<449::AIDCHEM449>3.0.CO;2-A.
- M.L. Kasner, F. Freeman, Z.M. Tsegai and W.J. Hehre, J. Chem. Educ., 77, 661 (2000); https://doi.org/10.1021/ed077p661.
- W.J. Hehre, R.W. Taft and R.D. Topsom, Prog. Phys. Org. Chem., 12, 159 (1976).
- M.K. Kaloustian, N. Dennis, S. Mager, S.A. Evans, F. Alcudia and E.L. Eliel, J. Am. Chem. Soc., 98, 956 (1976); https://doi.org/10.1021/ja00420a015.
- Z. Dega-Szafran, M. Jaskólski, I. Kurzyca, P. Barczynski and M. Szafran, J. Mol. Struct., 614, 23 (2002); https://doi.org/10.1016/S0022-2860(02)00234-X.
- Y. Xiong, T. An, C. He, Y. Liu, J. Chen, C. Zha, H.T. Karlsson and X. Chen, J. Chem. Crystallogr., 32, 219 (2002); https://doi.org/10.1023/A:1020292821315.
- W. Kemp, Organic Spectroscopy, Palgrave Macmillan, edn 3 (1991).
- S. Gunasekaran, B. Anita, Indian J. Pure App. Phys., 46, 833 (2008).
- N. Sundaraganesan, B. Anand and B.D. Joshua, Spectrochim. Acta, 65, 1053 (2006); https://doi.org/10.1016/j.saa.2006.01.041.
- L.G. Prasad, V. Krishnakumar and R. Nagalakshmi, Physica B, 405, 1652 (2010); https://doi.org/10.1016/j.physb.2009.12.062.
- H.H. Willard, L.L. Merritt Jr., J.A. Dean and F.A. Settle Jr., Instrumental Methods ofAnalysis, Wadsworth Publishing Company, USA, edn 6, pp. 609 (1986).
- S.I. Bhat, P.M. Rao, A.P. Ganesh Bhat and D.K. Avasthi, Surf. Coat. Technol., 158-159, 725 (2002); https://doi.org/10.1016/S0257-8972(02)00260-8.
- C. Balarew and R. Duhlev, J. Solid State Chem., 55, 1 (1984); https://doi.org/10.1016/0022-4596(84)90240-8.
- L.R. Dalton, J. Phys. Condens. Matter, 15, R897 (2003); https://doi.org/10.1088/0953-8984/15/20/203.
- S. Karan and S.P.S. Gupta, Mater. Sci. Eng. A, 398, 198 (2005); https://doi.org/10.1016/j.msea.2005.03.016.
- E.M. Onitsch, Mikroscopia, 2, 131 (1947).
- H. Nakatani, W.R. Bosenberg, L.K. Cheng and C.L. Tang, Appl. Phys. Lett., 53, 2587 (1988); https://doi.org/10.1063/1.100535.
- G.C. Bhar, A.K. Chaudhary and P. Kumbhakar, Appl. Surf. Sci., 161, 155 (2000); https://doi.org/10.1016/S0169-4332(00)00276-2.
- S. Vanishri, H.L. Bhat, A. Deepthy, V.P.N. Nampoori, E. de Matos Gomes and M. Belsley, Appl. Phys., 99, 083107 (2006); https://doi.org/10.1063/1.2193164.
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
References
K. Sethuraman, R.R. Babu, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Spectrochim. Acta A, 66, 707 (2007); https://doi.org/10.1016/j.saa.2006.04.020.
A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystollagr., 32, 115 (1999); https://doi.org/10.1107/S0021889898007717.
D. Havlicek, V. Chudoba, I. Nemec, I. Cisarova and Z. Micka, J. Mol. Struct., 606, 101 (2002); https://doi.org/10.1016/S0022-2860(01)00857-2.
T. Eicher, S. Hauptmann, The Chemisty of Hetrocycles, G. Thieme Verlag, Stuttgard (1995).
P.H. Stahl and C.G. Wermuth, Handbook of Pharmaceutical Salts Properties, Selection and Use, Wiley-VCh, Weinheim (2002).
J.D. Abraham, Burger’s Medical Chemistry and Drug Discovery, Wiley- Interscience, Hoboken, NY (2003).
A. Parkin, I.D.H. Oswald and S. Parsons, Acta Crystallogr. B, 60, 219 (2004); https://doi.org/10.1107/S0108768104003672.
J.L. Bredas, C. Adant, P. Tackx, A. Persoons and B.M. Pierce, Chem. Rev., 94, 243 (1994); https://doi.org/10.1021/cr00025a008.
P.V. Metha, N. Tripathi and S.K. Kumar, Chalcogenide Lett., 2, 39 (2005).
N.L. Allinger, J.G.D. Carpenter and F.M. Karkowski, Tetrahedron Lett., 5, 3345 (1964); https://doi.org/10.1016/0040-4039(64)83097-5.
A. Parkin, I.D.H. Oswald and S. Parsons, Acta Crystallogr., 60, 219 (2004); https://doi.org/10.1107/S0108768104003672.
A.M. Belostotskii, H.E. Gottlieb, P. Aped and A. Hassner, Chem. Eur. J., 5, 449 (1999); https://doi.org/10.1002/(SICI)1521-3765(19990201)5:2<449::AIDCHEM449>3.0.CO;2-A.
M.L. Kasner, F. Freeman, Z.M. Tsegai and W.J. Hehre, J. Chem. Educ., 77, 661 (2000); https://doi.org/10.1021/ed077p661.
W.J. Hehre, R.W. Taft and R.D. Topsom, Prog. Phys. Org. Chem., 12, 159 (1976).
M.K. Kaloustian, N. Dennis, S. Mager, S.A. Evans, F. Alcudia and E.L. Eliel, J. Am. Chem. Soc., 98, 956 (1976); https://doi.org/10.1021/ja00420a015.
Z. Dega-Szafran, M. Jaskólski, I. Kurzyca, P. Barczynski and M. Szafran, J. Mol. Struct., 614, 23 (2002); https://doi.org/10.1016/S0022-2860(02)00234-X.
Y. Xiong, T. An, C. He, Y. Liu, J. Chen, C. Zha, H.T. Karlsson and X. Chen, J. Chem. Crystallogr., 32, 219 (2002); https://doi.org/10.1023/A:1020292821315.
W. Kemp, Organic Spectroscopy, Palgrave Macmillan, edn 3 (1991).
S. Gunasekaran, B. Anita, Indian J. Pure App. Phys., 46, 833 (2008).
N. Sundaraganesan, B. Anand and B.D. Joshua, Spectrochim. Acta, 65, 1053 (2006); https://doi.org/10.1016/j.saa.2006.01.041.
L.G. Prasad, V. Krishnakumar and R. Nagalakshmi, Physica B, 405, 1652 (2010); https://doi.org/10.1016/j.physb.2009.12.062.
H.H. Willard, L.L. Merritt Jr., J.A. Dean and F.A. Settle Jr., Instrumental Methods ofAnalysis, Wadsworth Publishing Company, USA, edn 6, pp. 609 (1986).
S.I. Bhat, P.M. Rao, A.P. Ganesh Bhat and D.K. Avasthi, Surf. Coat. Technol., 158-159, 725 (2002); https://doi.org/10.1016/S0257-8972(02)00260-8.
C. Balarew and R. Duhlev, J. Solid State Chem., 55, 1 (1984); https://doi.org/10.1016/0022-4596(84)90240-8.
L.R. Dalton, J. Phys. Condens. Matter, 15, R897 (2003); https://doi.org/10.1088/0953-8984/15/20/203.
S. Karan and S.P.S. Gupta, Mater. Sci. Eng. A, 398, 198 (2005); https://doi.org/10.1016/j.msea.2005.03.016.
E.M. Onitsch, Mikroscopia, 2, 131 (1947).
H. Nakatani, W.R. Bosenberg, L.K. Cheng and C.L. Tang, Appl. Phys. Lett., 53, 2587 (1988); https://doi.org/10.1063/1.100535.
G.C. Bhar, A.K. Chaudhary and P. Kumbhakar, Appl. Surf. Sci., 161, 155 (2000); https://doi.org/10.1016/S0169-4332(00)00276-2.
S. Vanishri, H.L. Bhat, A. Deepthy, V.P.N. Nampoori, E. de Matos Gomes and M. Belsley, Appl. Phys., 99, 083107 (2006); https://doi.org/10.1063/1.2193164.
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.