Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conformational Studies with Density Functional Theory of Ethylene Glycol as Intermediate
Corresponding Author(s) : Ch. Ravi Shankar Kumar
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
Ethylene glycol is an important organic compound and chemical intermediate used in a large number of industrial processes. This study focuses on the density functional theory with basis set 6-311++G(d,p) that provides a method for analyzing the reactivity of ethylene glycol in terms of local and global descriptions that account for various chemical and critical phenomena with optimized structure. A comparative study of these spectroscopic properties was attributed with reported experimental studies justifies the nature of the compound, suitability to act as an intermediate and for conjugation of metallic’s and organics in particular.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Chaudhari and S.-L. Lee, J. Chem. Phys., 120, 7464 (2004); https://doi.org/10.1063/1.1688754.
- F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.-Y. Silvert and K. Tekaia-Elhsissen, Nanostruct. Mater., 11, 1277 (1999); https://doi.org/10.1016/S0965-9773(99)00419-5.
- D.A. Becke, J. Chem. Phys., 140, 18A301 (2014); https://doi.org/10.1063/1.4869598.
- J.A. Plumley and J.J. Dannenberg, J. Comput. Chem., 32, 1519 (2011); https://doi.org/10.1002/jcc.21729.
- D. Feller, J. Comput. Chem., 17, 1571 (1996); https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AIDJCC9>3.0.CO;2-P.
- K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T.L. Windus, J. Chem. Inf. Model., 47, 1045 (2007); https://doi.org/10.1021/ci600510j.
- M. Lozynski, D. Rusinska-Roszak and H.-G. Mack, J. Phys. Chem. A, 102, 2899 (1998); https://doi.org/10.1021/jp973142x.
- C. Murli, N. Lu, Z. Dong and Y. Song, J. Phys. Chem. B, 116, 12574 (2012); https://doi.org/10.1021/jp306220q.
- K. Krishnan and R.S. Krishnan, Proc. Indian Acad. Sci. Sect. A Phys. Sci., 64, 111 (1966).
- T.T. Nguyen, M. Raupach and L.J. Janik, Clays Clay Miner., 35, 60 (1987); https://doi.org/10.1346/CCMN.1987.0350108.
- P. Buckley and P.A. Giguère, Can. J. Chem., 45, 397 (1967); https://doi.org/10.1139/v67-070.
- NIST CHEM WEB BOOK, NIST Standard Reference database Number 69 (2016).
- A.V. Gubskaya and P.G. Kusalik, J. Phys. Chem. A, 108, 7165 (2004); https://doi.org/10.1021/jp048921+.
References
A. Chaudhari and S.-L. Lee, J. Chem. Phys., 120, 7464 (2004); https://doi.org/10.1063/1.1688754.
F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.-Y. Silvert and K. Tekaia-Elhsissen, Nanostruct. Mater., 11, 1277 (1999); https://doi.org/10.1016/S0965-9773(99)00419-5.
D.A. Becke, J. Chem. Phys., 140, 18A301 (2014); https://doi.org/10.1063/1.4869598.
J.A. Plumley and J.J. Dannenberg, J. Comput. Chem., 32, 1519 (2011); https://doi.org/10.1002/jcc.21729.
D. Feller, J. Comput. Chem., 17, 1571 (1996); https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AIDJCC9>3.0.CO;2-P.
K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T.L. Windus, J. Chem. Inf. Model., 47, 1045 (2007); https://doi.org/10.1021/ci600510j.
M. Lozynski, D. Rusinska-Roszak and H.-G. Mack, J. Phys. Chem. A, 102, 2899 (1998); https://doi.org/10.1021/jp973142x.
C. Murli, N. Lu, Z. Dong and Y. Song, J. Phys. Chem. B, 116, 12574 (2012); https://doi.org/10.1021/jp306220q.
K. Krishnan and R.S. Krishnan, Proc. Indian Acad. Sci. Sect. A Phys. Sci., 64, 111 (1966).
T.T. Nguyen, M. Raupach and L.J. Janik, Clays Clay Miner., 35, 60 (1987); https://doi.org/10.1346/CCMN.1987.0350108.
P. Buckley and P.A. Giguère, Can. J. Chem., 45, 397 (1967); https://doi.org/10.1139/v67-070.
NIST CHEM WEB BOOK, NIST Standard Reference database Number 69 (2016).
A.V. Gubskaya and P.G. Kusalik, J. Phys. Chem. A, 108, 7165 (2004); https://doi.org/10.1021/jp048921+.