Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Complex Formation Reactions of Palladium(II) and Amlodipine Drug with Biologically Active Ligands
Corresponding Author(s) : Reda A. Ammar
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
The stability constants of various complexes of [Pd(drug)(H2O)2]2+ (drug = amlodipine) with peptides, (L) viz. glycylglycine, leucylalanine, glycylvaline, glycinamide and glutamine have been studied using potentiometric measurements. The complexes formation procedure has been predictable according to the pH range studied. A different complexes constants were determined under 0.1 mol/dm3 NaNO3 and 25 °C conditions such as stability and stoichiometries constants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.P. Farrell, in eds.: B.R. James and R. Ugo, Transition Metal Complexes as Drugs and Chemotherapeutic Agents, Reidel-Kluwer Academic Press: Dordrecht, vol. 11 (1989).
- N.P. Farrell, The Uses of Inorganic Chemistry in Medicine; The Royal Society of Chemistry: Cambridge (1999).
- C. Orvig and M. Abrams, J. Chem. Rev., 99, 2201 (1999); https://doi.org/10.1021/cr980419w.
- Z. Guo and P.J. Sadler, Angew. Chem. Int. Ed. Engl., 38, 1512 (1999); https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y.
- B. Keppler, Metal Complexes in Cancer Chemotherapy, VCH: Basel (1993).
- M.J. Clarke, Progress in Clinical Biochemistry and Medicine, vol. 10 (1989).
- S.P. Fricker, Metal Complexes in Cancer Therapy, Chapman and Hall: London, vol. 1, p. 215 (1994).
- G. Berthon, Handbook of Metal-ligand Interactions in Biological Fluids, Marcel-Dekker Inc.: New York, vols. 1 and 2 (1995).
- M.J. Clarke and P.J. Sadler, Metallopharmaceuticals I: DNA Interactions, Springer-Verlag: Berlin, vol. 1, p. 199 (1999).
- Z. Guo and P.J. Sadler, Adv. Inorg. Chem., 49, 183 (1999); https://doi.org/10.1016/S0898-8838(08)60271-8.
- R.M. Roat, Bioinorganic Chemistry: A Short Course, Wiley Interscience, Hoboken, New Jersey (2002).
- O. Andersen, Chem. Rev., 99, 2683 (1999); https://doi.org/10.1021/cr980453a.
- Z.D. Liu and R.C. Hider, Coord. Chem. Rev., 232, 151 (2002); https://doi.org/10.1016/S0010-8545(02)00050-4.
- B. Sarkar, Chem. Rev., 99, 2535 (1999); https://doi.org/10.1021/cr980446m.
- M. Whittaker, C.D. Floyd, P. Brown and A. Gearing, J. Chem. Rev., 99, 2735 (1999); https://doi.org/10.1021/cr9804543.
- W.C. Parks, R. Mecham and R.P. Mecham, Matrix Metalloproteinases; Academic Press (1998).
- B.L. Vallee and D.S. Auld, Acc. Chem. Res., 26, 543 (1993); https://doi.org/10.1021/ar00034a005.
- A. Rein, L.E. Henderson and J.G. Levin, Trends Biochem. Sci., 23, 297 (1998); https://doi.org/10.1016/S0968-0004(98)01256-0.
- J.L. Butour, S. Wimmer, F. Wimmer and P. Castan, Chem. Biol. Interact., 104, 165 (1997); https://doi.org/10.1016/S0009-2797(97)00022-7.
- N.N. Stone and P.G. Stock, Eur. Urol., 41, 427 (2002); https://doi.org/10.1016/S0302-2838(02)00019-2.
- L. Potters, Y. Cao, E. Calugaru, T. Torre, P. Fearn and X.H. Wang, Int. J. Radiat. Oncol. Biol. Phys., 50, 605 (2001); https://doi.org/10.1016/S0360-3016(01)01473-0.
- M. Das and S.E. Livingstone, Br. J. Cancer, 37, 466 (1978); https://doi.org/10.1038/bjc.1978.68.
- W. Guerra, E. de Andrade Azevedo, A.R. de Souza Monteiro, M. Bucciarelli-Rodriguez, E. Chartone-Souza, A.M.A. Nascimento, A.P.S. Fontes, L. Le Moyec and E.C. Pereira-Maia, J. Inorg. Biochem., 99, 2348 (2005); https://doi.org/10.1016/j.jinorgbio.2005.09.001.
- J.M. Beale Jr. and J.H. Block, Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincott Williams and Wilkins, Philadelphia, edn 12, pp. 626 (2011).
- T. Rau, M.M. Shoukry and R. van Eldik, Inorg. Chem., 36, 1454 (1997); https://doi.org/10.1021/ic961192v.
- P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3.
- L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4.
- Z.D. Bugarcic, B.V. Petrovic and R. Jelic, Transition Met. Chem., 26, 668 (2001); https://doi.org/10.1023/A:1012064512961.
- M.C. Lim, J. Chem. Soc., Dalton Trans., 15 (1977); https://doi.org/10.1039/dt9770000015.
References
N.P. Farrell, in eds.: B.R. James and R. Ugo, Transition Metal Complexes as Drugs and Chemotherapeutic Agents, Reidel-Kluwer Academic Press: Dordrecht, vol. 11 (1989).
N.P. Farrell, The Uses of Inorganic Chemistry in Medicine; The Royal Society of Chemistry: Cambridge (1999).
C. Orvig and M. Abrams, J. Chem. Rev., 99, 2201 (1999); https://doi.org/10.1021/cr980419w.
Z. Guo and P.J. Sadler, Angew. Chem. Int. Ed. Engl., 38, 1512 (1999); https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y.
B. Keppler, Metal Complexes in Cancer Chemotherapy, VCH: Basel (1993).
M.J. Clarke, Progress in Clinical Biochemistry and Medicine, vol. 10 (1989).
S.P. Fricker, Metal Complexes in Cancer Therapy, Chapman and Hall: London, vol. 1, p. 215 (1994).
G. Berthon, Handbook of Metal-ligand Interactions in Biological Fluids, Marcel-Dekker Inc.: New York, vols. 1 and 2 (1995).
M.J. Clarke and P.J. Sadler, Metallopharmaceuticals I: DNA Interactions, Springer-Verlag: Berlin, vol. 1, p. 199 (1999).
Z. Guo and P.J. Sadler, Adv. Inorg. Chem., 49, 183 (1999); https://doi.org/10.1016/S0898-8838(08)60271-8.
R.M. Roat, Bioinorganic Chemistry: A Short Course, Wiley Interscience, Hoboken, New Jersey (2002).
O. Andersen, Chem. Rev., 99, 2683 (1999); https://doi.org/10.1021/cr980453a.
Z.D. Liu and R.C. Hider, Coord. Chem. Rev., 232, 151 (2002); https://doi.org/10.1016/S0010-8545(02)00050-4.
B. Sarkar, Chem. Rev., 99, 2535 (1999); https://doi.org/10.1021/cr980446m.
M. Whittaker, C.D. Floyd, P. Brown and A. Gearing, J. Chem. Rev., 99, 2735 (1999); https://doi.org/10.1021/cr9804543.
W.C. Parks, R. Mecham and R.P. Mecham, Matrix Metalloproteinases; Academic Press (1998).
B.L. Vallee and D.S. Auld, Acc. Chem. Res., 26, 543 (1993); https://doi.org/10.1021/ar00034a005.
A. Rein, L.E. Henderson and J.G. Levin, Trends Biochem. Sci., 23, 297 (1998); https://doi.org/10.1016/S0968-0004(98)01256-0.
J.L. Butour, S. Wimmer, F. Wimmer and P. Castan, Chem. Biol. Interact., 104, 165 (1997); https://doi.org/10.1016/S0009-2797(97)00022-7.
N.N. Stone and P.G. Stock, Eur. Urol., 41, 427 (2002); https://doi.org/10.1016/S0302-2838(02)00019-2.
L. Potters, Y. Cao, E. Calugaru, T. Torre, P. Fearn and X.H. Wang, Int. J. Radiat. Oncol. Biol. Phys., 50, 605 (2001); https://doi.org/10.1016/S0360-3016(01)01473-0.
M. Das and S.E. Livingstone, Br. J. Cancer, 37, 466 (1978); https://doi.org/10.1038/bjc.1978.68.
W. Guerra, E. de Andrade Azevedo, A.R. de Souza Monteiro, M. Bucciarelli-Rodriguez, E. Chartone-Souza, A.M.A. Nascimento, A.P.S. Fontes, L. Le Moyec and E.C. Pereira-Maia, J. Inorg. Biochem., 99, 2348 (2005); https://doi.org/10.1016/j.jinorgbio.2005.09.001.
J.M. Beale Jr. and J.H. Block, Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincott Williams and Wilkins, Philadelphia, edn 12, pp. 626 (2011).
T. Rau, M.M. Shoukry and R. van Eldik, Inorg. Chem., 36, 1454 (1997); https://doi.org/10.1021/ic961192v.
P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3.
L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4.
Z.D. Bugarcic, B.V. Petrovic and R. Jelic, Transition Met. Chem., 26, 668 (2001); https://doi.org/10.1023/A:1012064512961.
M.C. Lim, J. Chem. Soc., Dalton Trans., 15 (1977); https://doi.org/10.1039/dt9770000015.