Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation of Some Methoxy Anilines by Tetrabutylammoniumbromochromate in Aqueous Acetic Acid Medium: A Kinetics Study
Corresponding Author(s) : S. Sheik Mansoor
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
The oxidation of aniline (A), 2,4-dimethoxy aniline (2,4-DMA), 2,6-dimethoxy aniline (2,6-DMA), 2,4,6-trimethoxy aniline (2,4,6-TMA) and 3,4,5-trimethoxy aniline (3,4,5-TMA) by tetrabutylammoniumbromochromate (TBABC) have been studied in 50 % acetic acid – 50 % water medium in the presence of perchloric acid. The oxidation leads to the formation of the corresponding azobenzenes. The reaction is first order with respect to [TBABC], [S] and [H+]. The reaction has been found to be catalyzed by H+ ions. The reactions were studied at four different temperatures and thermodynamic parameters were calculated. The rates decreased in the order: 2,4,6-TMA > 2,6-DMA > 2,4-DMA > 3,4,5-TMA > aniline.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Boonrattanakij, M.C. Lu and J. Anotai, J. Hazard. Mater., 172, 952 (2009); https://doi.org/10.1016/j.jhazmat.2009.07.079.
- G.I. Poos, G.E. Arth, R.E. Beyler and L.H. Sarett, J. Am. Chem. Soc., 75, 422 (1953); https://doi.org/10.1021/ja01098a049.
- E.J. Corey and J.W. Suggs, Tetrahedron Lett., 16, 2647 (1975); https://doi.org/10.1016/S0040-4039(00)75204-X.
- E.J. Corey and G. Schmidt, Tetrahedron Lett., 20, 399 (1979); https://doi.org/10.1016/S0040-4039(01)93515-4.
- S.Z. Ahmed, S.S. Shafi and S.S. Mansoor, Asian J. Chem., 25, 8245 (2013); https://doi.org/10.14233/ajchem.2013.13559.
- S.S. Mansoor, Asian J. Chem., 22, 7591 (2010).
- S.S. Mansoor and B.H. Asghar, J. Indian Chem. Soc., 90, 1395 (2013).
- S. Ghammamy and S. Dastpeyman, J. Chin. Chem. Soc. (Taipei), 55, 229 (2008); https://doi.org/10.1002/jccs.200800034.
- S.S. Mansoor and S.S. Shafi, Z. Phys. Chem., 225, 249 (2011); https://doi.org/10.1524/zpch.2011.0044.
- P. Swami, D. Yajurvedi, P. Mishra and P.K. Sharma, Int. J. Chem. Kinet., 42, 50 (2010); https://doi.org/10.1002/kin.20466.
- G. Ghammamy, K. Mehrani, H. Afrand and M. Hajighahrammani, Afr. J. Pure Appl. Chem., 1, 8 (2007).
- S.B. Patwari, S.V. Khansole and Y.B. Vibhute, J. Iran. Chem. Soc, 6, 399 (2009); https://doi.org/10.1007/BF03245850.
- V.K. Gupta, React. Catal. Lett., 27, 207 (1985); https://doi.org/10.1007/BF02064488.
- S.S. Mansoor and S.S. Shafi, Arab. J. Chem., 7, 171 (2014); https://doi.org/10.1016/j.arabjc.2010.10.020.
- D.S. Bhuvaneswari and K.P. Elango, Int. J. Chem. Kinet., 38, 657 (2006); https://doi.org/10.1002/kin.20199.
- D.S. Bhuvaneshwari and K.P. Elango, Z. Naturforsch., 60b, 1105 (2005).
- C.A.H. Aguilar, J. Narayanan, N. Singh and P. Thangarasu, J. Phys. Org. Chem., 27, 440 (2014); https://doi.org/10.1002/poc.3281.
- C. Srinivasan, S. Rajagopal and A. Chellamani, J. Chem. Soc. Perkin Trans. II, 1839 (1990); https://doi.org/10.1039/p29900001839.
- E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press, New York, p. 42 (1967).
- O. Exner, J.R. Streitwiser and R.W. Talt, Progress in Physical Organic Chemistry, John Wiley, New York, p. 41 (1973).
- J.F. Leffler and E. Grunwald, Rates and Equilibrium of Organic Reactions, Wiley, New York (1963).
- T. Alam, H. Tarannum, S.R. Ali and Kamaluddin, J. Colloid Interface Sci., 245, 251 (2002); https://doi.org/10.1006/jcis.2001.7968.
- S. Jabir, B.H. Asghar and S.S. Mansoor, Orient. J. Chem., 33, 288 (2017); https://doi.org/10.13005/ojc/330134.
References
N. Boonrattanakij, M.C. Lu and J. Anotai, J. Hazard. Mater., 172, 952 (2009); https://doi.org/10.1016/j.jhazmat.2009.07.079.
G.I. Poos, G.E. Arth, R.E. Beyler and L.H. Sarett, J. Am. Chem. Soc., 75, 422 (1953); https://doi.org/10.1021/ja01098a049.
E.J. Corey and J.W. Suggs, Tetrahedron Lett., 16, 2647 (1975); https://doi.org/10.1016/S0040-4039(00)75204-X.
E.J. Corey and G. Schmidt, Tetrahedron Lett., 20, 399 (1979); https://doi.org/10.1016/S0040-4039(01)93515-4.
S.Z. Ahmed, S.S. Shafi and S.S. Mansoor, Asian J. Chem., 25, 8245 (2013); https://doi.org/10.14233/ajchem.2013.13559.
S.S. Mansoor, Asian J. Chem., 22, 7591 (2010).
S.S. Mansoor and B.H. Asghar, J. Indian Chem. Soc., 90, 1395 (2013).
S. Ghammamy and S. Dastpeyman, J. Chin. Chem. Soc. (Taipei), 55, 229 (2008); https://doi.org/10.1002/jccs.200800034.
S.S. Mansoor and S.S. Shafi, Z. Phys. Chem., 225, 249 (2011); https://doi.org/10.1524/zpch.2011.0044.
P. Swami, D. Yajurvedi, P. Mishra and P.K. Sharma, Int. J. Chem. Kinet., 42, 50 (2010); https://doi.org/10.1002/kin.20466.
G. Ghammamy, K. Mehrani, H. Afrand and M. Hajighahrammani, Afr. J. Pure Appl. Chem., 1, 8 (2007).
S.B. Patwari, S.V. Khansole and Y.B. Vibhute, J. Iran. Chem. Soc, 6, 399 (2009); https://doi.org/10.1007/BF03245850.
V.K. Gupta, React. Catal. Lett., 27, 207 (1985); https://doi.org/10.1007/BF02064488.
S.S. Mansoor and S.S. Shafi, Arab. J. Chem., 7, 171 (2014); https://doi.org/10.1016/j.arabjc.2010.10.020.
D.S. Bhuvaneswari and K.P. Elango, Int. J. Chem. Kinet., 38, 657 (2006); https://doi.org/10.1002/kin.20199.
D.S. Bhuvaneshwari and K.P. Elango, Z. Naturforsch., 60b, 1105 (2005).
C.A.H. Aguilar, J. Narayanan, N. Singh and P. Thangarasu, J. Phys. Org. Chem., 27, 440 (2014); https://doi.org/10.1002/poc.3281.
C. Srinivasan, S. Rajagopal and A. Chellamani, J. Chem. Soc. Perkin Trans. II, 1839 (1990); https://doi.org/10.1039/p29900001839.
E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press, New York, p. 42 (1967).
O. Exner, J.R. Streitwiser and R.W. Talt, Progress in Physical Organic Chemistry, John Wiley, New York, p. 41 (1973).
J.F. Leffler and E. Grunwald, Rates and Equilibrium of Organic Reactions, Wiley, New York (1963).
T. Alam, H. Tarannum, S.R. Ali and Kamaluddin, J. Colloid Interface Sci., 245, 251 (2002); https://doi.org/10.1006/jcis.2001.7968.
S. Jabir, B.H. Asghar and S.S. Mansoor, Orient. J. Chem., 33, 288 (2017); https://doi.org/10.13005/ojc/330134.