Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper(II) Salt Catalyzed Coupling Strategy Towards Synthesis of Substituted Dibenzopyranones
Corresponding Author(s) : Jaya Pandey
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Copper salts are environmentally friendly and less expensive as compared to other transition metal salts. These salts have historically been used for carbon-carbon cross-coupling reactions. In present work, we adopted CuSO4 catalyzed C-C coupling reactions in presence of base to obtain series of substituted dibenzopyranone derivatives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, Wiley: Chichester (2000).
- J. Tsuji, Topics in Organometallic Chemistry: Palladium in Organic Synthesis. Springer: New York (2005).
- A. de Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: Weinheim (2004).
- M. Beller and C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH: Weinheim, edn 2 (2004).
- J. Magano and J.R. Dunetz, Chem. Rev., 111, 2177 (2011); https://doi.org/10.1021/cr100346g.
- F.W. Patureau and L.J. Gooßen, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Hoboken (2013).
- C. Glaser, Ber. Dtsch. Chem. Ges., 2, 422 (1869); https://doi.org/10.1002/cber.186900201183.
- F. Ullmann and J. Bielecki, Ber., 34, 2174 (1901); https://doi.org/10.1002/cber.190103402141.
- C. Bolm, J. Legros, J. Le-Paih and L. Zani, Chem. Rev., 104, 6217 (2004); https://doi.org/10.1021/cr040664h.
- N. Krause, Modern Organocopper Chemistry, Wiley-VCH: Weinheim (2002).
- F. Monnier and M. Taillefer, Angew. Chem. Int. Ed., 48, 6954 (2009); https://doi.org/10.1002/anie.200804497.
- Y. Su, W. Jia and N. Jiao, Synthesis, 1678 (2001); https://doi.org/10.1055/s-0030-1260028.
- R.D. Stephens and C.E. Castro, J. Org. Chem., 28, 3313 (1963); https://doi.org/10.1021/jo01047a008.
- A. Klapars, J.C. Antilla, X. Huang and S.L. Buchwald, J. Am. Chem. Soc., 123, 7727 (2001); https://doi.org/10.1021/ja016226z.
- J.C. Antilla, J.M. Baskin, T.E. Barder and S.L. Buchwald, J. Org. Chem., 69, 5578 (2004); https://doi.org/10.1021/jo049658b.
- V. Ritleng, C. Sirlin and M. Pfeffer, Chem. Rev., 102, 1731 (2002); https://doi.org/10.1021/cr0104330.
- (a) T.S. Ratani, S. Bachman, G.C. Fu and J.C. Peters, J. Am. Chem. Soc., 137, 13902 (2015); https://doi.org/10.1021/jacs.5b08452. (b) S. Luo, F.-X. Luo, X.-S. Zhang and Z.-J. Shi, Angew. Chem. Int. Ed., 52, 10598 (2013); https://doi.org/10.1002/anie.201304295.
- R.J. Phipps, N.P. Grimster and M.J. Gaunt, J. Am. Chem. Soc., 130, 8172 (2008); https://doi.org/10.1021/ja801767s.
- (a) W.J. Horton and D.E. Robertson, J. Org. Chem., 25, 1016 (1960); https://doi.org/10.1021/jo01076a039. (b) H.H. Strain, J. Am. Chem. Soc., 49, 1558 (1927); https://doi.org/10.1021/ja01405a025. (c) H.H. Hodgson and T.A. Jenkinson, J. Chem. Soc., 0, 1740 (1927); https://doi.org/10.1039/JR9270001740.
References
J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, Wiley: Chichester (2000).
J. Tsuji, Topics in Organometallic Chemistry: Palladium in Organic Synthesis. Springer: New York (2005).
A. de Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: Weinheim (2004).
M. Beller and C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH: Weinheim, edn 2 (2004).
J. Magano and J.R. Dunetz, Chem. Rev., 111, 2177 (2011); https://doi.org/10.1021/cr100346g.
F.W. Patureau and L.J. Gooßen, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Hoboken (2013).
C. Glaser, Ber. Dtsch. Chem. Ges., 2, 422 (1869); https://doi.org/10.1002/cber.186900201183.
F. Ullmann and J. Bielecki, Ber., 34, 2174 (1901); https://doi.org/10.1002/cber.190103402141.
C. Bolm, J. Legros, J. Le-Paih and L. Zani, Chem. Rev., 104, 6217 (2004); https://doi.org/10.1021/cr040664h.
N. Krause, Modern Organocopper Chemistry, Wiley-VCH: Weinheim (2002).
F. Monnier and M. Taillefer, Angew. Chem. Int. Ed., 48, 6954 (2009); https://doi.org/10.1002/anie.200804497.
Y. Su, W. Jia and N. Jiao, Synthesis, 1678 (2001); https://doi.org/10.1055/s-0030-1260028.
R.D. Stephens and C.E. Castro, J. Org. Chem., 28, 3313 (1963); https://doi.org/10.1021/jo01047a008.
A. Klapars, J.C. Antilla, X. Huang and S.L. Buchwald, J. Am. Chem. Soc., 123, 7727 (2001); https://doi.org/10.1021/ja016226z.
J.C. Antilla, J.M. Baskin, T.E. Barder and S.L. Buchwald, J. Org. Chem., 69, 5578 (2004); https://doi.org/10.1021/jo049658b.
V. Ritleng, C. Sirlin and M. Pfeffer, Chem. Rev., 102, 1731 (2002); https://doi.org/10.1021/cr0104330.
(a) T.S. Ratani, S. Bachman, G.C. Fu and J.C. Peters, J. Am. Chem. Soc., 137, 13902 (2015); https://doi.org/10.1021/jacs.5b08452. (b) S. Luo, F.-X. Luo, X.-S. Zhang and Z.-J. Shi, Angew. Chem. Int. Ed., 52, 10598 (2013); https://doi.org/10.1002/anie.201304295.
R.J. Phipps, N.P. Grimster and M.J. Gaunt, J. Am. Chem. Soc., 130, 8172 (2008); https://doi.org/10.1021/ja801767s.
(a) W.J. Horton and D.E. Robertson, J. Org. Chem., 25, 1016 (1960); https://doi.org/10.1021/jo01076a039. (b) H.H. Strain, J. Am. Chem. Soc., 49, 1558 (1927); https://doi.org/10.1021/ja01405a025. (c) H.H. Hodgson and T.A. Jenkinson, J. Chem. Soc., 0, 1740 (1927); https://doi.org/10.1039/JR9270001740.