Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Green Synthesis of Gold Nanoparticles Using Bougainvillea glabra Leaf Extract
Corresponding Author(s) : S. Vidhya
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Bougainvillea glabra has excellent antimicrobial property and it has good glucose tolerance and significantly reduced intestinal glucosidase activity, with regeneration of insulin-producing cells and increase in plasma insulin. A novel technique for biosynthesis of gold nanoparticles (GNPs) using B. glabra as a reductant and offers a green route for the synthesis of GNPs. The synthesized GNPs are characterized by UV-visible spectrophotometer, TEM, EDAX, FTIR and XRD. The synthesized GNPs were mostly oval in shape and the average diameter of GNPs was about 25.71 nm. Energy dispersive X-ray (EDAX) spectrometer confirmed the presence of elemental gold signal of gold nanoparticles. The nanoparticles are found to be highly crystalline as evidenced by the peaks in XRD pattern corresponding to Bragg reflections from (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes of the fcc structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- http://www.pharmainfo.net/book/emerging-trends-nanotechnologypharmacy-1introduction-nanotechnology/classification.
- S.A. Fawad, N. Khalid, W. Asghar and H.A.R. Suleria, Chin. J. Nat. Med., 10, 441 (2012); https://doi.org/10.1016/S1875-5364(12)60085-5.
- R.K. Mohanty, S. Thennarasu and A.B. Mandal, Colloids Surf. B Biointerfaces, 114, 138 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.057.
- D.M. Lingappa, Bioinorg. Chem. Appl., Article ID 341798 (2013); https://doi.org/10.1155/2013/341798.
- A. Henglein, J. Phys. Chem., 97, 5457 (1993); https://doi.org/10.1021/j100123a004.
- S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
- J.Y. Song and B.S. Kim, Bioprocess Biosyst. Eng., 32, 79 (2009); https://doi.org/10.1007/s00449-008-0224-6.
- J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis, Springer (2012).
- D.V. Leff, L. Brandt and J.R. Heath, Langmuir, 12, 4723 (1996); https://doi.org/10.1021/la960445u.
- D. Philip, Physica E, 42, 1417 (2010); https://doi.org/10.1016/j.physe.2009.11.081.
- D. Inbakandan, R. Venkatesan and S.A. Khan, Colloids Surf. B Biointerfaces, 81, 634 (2010); https://doi.org/10.1016/j.colsurfb.2010.08.016.
- J. Mohan, Organic Spectroscopy-Principles and Applications, Narosa Publishing House, Delhi, edn 2 (2004).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley, New York, edn 3 (1978).
References
S.A. Fawad, N. Khalid, W. Asghar and H.A.R. Suleria, Chin. J. Nat. Med., 10, 441 (2012); https://doi.org/10.1016/S1875-5364(12)60085-5.
R.K. Mohanty, S. Thennarasu and A.B. Mandal, Colloids Surf. B Biointerfaces, 114, 138 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.057.
D.M. Lingappa, Bioinorg. Chem. Appl., Article ID 341798 (2013); https://doi.org/10.1155/2013/341798.
A. Henglein, J. Phys. Chem., 97, 5457 (1993); https://doi.org/10.1021/j100123a004.
S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
J.Y. Song and B.S. Kim, Bioprocess Biosyst. Eng., 32, 79 (2009); https://doi.org/10.1007/s00449-008-0224-6.
J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis, Springer (2012).
D.V. Leff, L. Brandt and J.R. Heath, Langmuir, 12, 4723 (1996); https://doi.org/10.1021/la960445u.
D. Philip, Physica E, 42, 1417 (2010); https://doi.org/10.1016/j.physe.2009.11.081.
D. Inbakandan, R. Venkatesan and S.A. Khan, Colloids Surf. B Biointerfaces, 81, 634 (2010); https://doi.org/10.1016/j.colsurfb.2010.08.016.
J. Mohan, Organic Spectroscopy-Principles and Applications, Narosa Publishing House, Delhi, edn 2 (2004).
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley, New York, edn 3 (1978).