Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Graphene/Polyaniline Nanocomposite Using Green Solvents
Corresponding Author(s) : M.J. Klink
Asian Journal of Chemistry,
Vol. 29 No. 6 (2017): Vol 29 Issue 6
Abstract
Graphene/polyaniline (GR/PANI) nanocomposite materials were synthesized in four different imidazolium based green ionic liquids, 1-butyl-2,3-dimethylimidazolium tetraflouroborate, 1-butyl-3-methylimidazolium tetraflouroborate, 1-butyl-3-methylimidazolium hexaflourophosphate and 1-butyl-3-methylimidazolium bis(triflouromethylsulfonyl) imide. Successful synthesis of the GR/PANI nanocomposite was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transformed infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD) and thermogravimetric analysis (TGA). FTIR and UV-visible results successfully confirmed the incorporation of polyaniline into the graphene/polyaniline structures. The SEM micrographs of the nanocomposites synthesized in ionic liquids showed that the polyaniline material were nucleated, aggregated or evenly distributed in between the graphene sheets depending on ionic solvent used, unlike a thick wavy films or passivated layer of the PANI nano material formed on the graphene sheet in the organic solvent. The XRD gave crystal sizes ranged between 89-950 nm and 29-250 nm for composites synthesized in ionic liquids and organic solvents respectively. Larger crystal size in ionic liquids was attributed to easy dissolution of starting material and electrostatic interaction between molecules. Energy dispersive X-ray and thermogravimetric analysis showed that the graphene/polyaniline nanocomposites synthesized in the presence of ionic liquids have similar properties to those synthesized in organic solvents. The photochemical and electrochemical properties of the ionic and organic solvent synthesized GR/PANI nanocomposite in catalysis, sensor and energy devices will be subject for future study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Manoharan, Technol. Soc., 30, 401 (2008); https://doi.org/10.1016/j.techsoc.2008.04.016.
- P.T. Anastas and M.M. Kirchhoff, Acc. Chem. Res., 35, 686 (2002); https://doi.org/10.1021/ar010065m.
- G. Singh and A. Kumar, Ind. J. Chem., 47A, 495 (2008).
- M.J. Earle and K.R. Seddon, Pure Appl. Chem., 72, 1391 (2000); https://doi.org/10.1351/pac200072071391.
- B. Wu, W.W. Liu, Y.M. Zhang and H.P. Wang, Chem. Eur. J., 15, 1804 (2009); https://doi.org/10.1002/chem.200801509.
- D. Han and K.H. Row, Molecules, 15, 2405 (2010); https://doi.org/10.3390/molecules15042405.
- T. Welton, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t.
- L. Jiang, X.P. Shen, J.L. Wu and K.C. Shen, J. Appl. Polym. Sci., 118, 275 (2010); https://doi.org/10.1002/app.32278.
- K. Zhang, L.L. Zhang, X. Zhao and J. Wu, Chem. Mater., 22, 1392 (2010); https://doi.org/10.1021/cm902876u.
- O.K. Park, T. Jeevananda, N.H. Kim, S. Kim and J.H. Lee, Scr. Mater., 60, 551 (2009); https://doi.org/10.1016/j.scriptamat.2008.12.005.
- D. Li and R.B. Kaner, J. Am. Chem. Soc., 128, 968 (2006); https://doi.org/10.1021/ja056609n.
- S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.B.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H.
- N.A. Kotov, Nature, 442, 254 (2006); https://doi.org/10.1038/442254a.
- H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977); https://doi.org/10.1039/c39770000578.
- J. Huang, Pure Appl. Chem., 78, 15 (2006); https://doi.org/10.1351/pac200678010015.
- A.S. Adekunle, J. Pillay and K.I. Ozoemena, Electrochim. Acta, 55, 4319 (2010); https://doi.org/10.1016/j.electacta.2009.02.102.
- C.K. Das and A. Mandal, J. Mater. Sci. Res., 1, 45 (2012).
- H. Wang, Q. Hao, X. Yang, L. Lu and X.A. Wang, Nanoscale, 2, 2164 (2010); https://doi.org/10.1039/c0nr00224k.
- D.A. Skoog, F.J. Holler and S.R. Crouch, Instrumental Analysis, Brooks/Cole, Cengage Learning, edn 6 (2007).
- C. Hammond, The Basics of Crystallography and Diffraction, International Union of Crystallography Texts on Crystallography: No. 3, (1997).
- C. Hammond, Royal Microscopical Society Microscopy Handbooks: Introduction To Crystallography, Revised Edition, Oxford University Press, Oxford, UK (1992).
- C. Harish, V.S. Sreeharsha, C. Santhosh, R. Ramachandran, M. Saranya, T.M. Vanchinathan, K. Govardhan and A.N. Grace, Adv. Sci. Eng. Med., 5, 140 (2013); https://doi.org/10.1166/asem.2013.1237.
- W.L. Zhang, B.J. Park and H.J. Choi, Chem. Commun., 46, 5596 (2010); https://doi.org/10.1039/c0cc00557f.
- Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J.R. Gong, J. Am. Chem. Soc., 133, 10878 (2011); https://doi.org/10.1021/ja2025454.
- C. Dhand, M. Das, G. Sumana, A.K. Srivastava, M.K. Pandey, C.G. Kim, M. Datta and B.D. Malhotra, Nanoscale, 2, 747 (2010); https://doi.org/10.1039/b9nr00346k.
- Y. Si and E.T. Samulski, Chem. Mater., 20, 6792 (2008); https://doi.org/10.1021/cm801356a.
- C. Hontoria-Lucas, A. Lopez-Peinado, J.D. López-González, M. Rojas- Cervantes and R. Martin-Aranda, Carbon, 33, 1585 (1995); https://doi.org/10.1016/0008-6223(95)00120-3.
- S. Goswami, U. Maiti, S. Maiti, S. Nandy, M. Mitra and K. Chattopadhyay, Carbon, 49, 2245 (2011); https://doi.org/10.1016/j.carbon.2011.01.055.
- S. Ameen, M.S. Akhtar and H.S. Shin, Sensors Actuators B: Chem., 173, 177 (2012); https://doi.org/10.1016/j.snb.2012.06.065.
- F. Thema, M. Moloto, E. Dikio, N. Nyangiwe, L. Kotsedi, M. Maaza and M. Khenfouch, J. Chem., Article ID 150536 (2012) https://doi.org/10.1155/2012/150536.
- Q. Hao, H. Wang, X. Yang, L. Lu and X. Wang, Nano Res., 4, 323 (2011); https://doi.org/10.1007/s12274-010-0087-4.
- P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth and A.K. Geim, Appl. Phys. Lett., 91, 063124 (2007); https://doi.org/10.1063/1.2768624.
- S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari and F. Mauri, Nat. Mater., 6, 198 (2007); https://doi.org/10.1038/nmat1846.
- Z. Chen, Y. Lin, Y.M.J. Rooks and P. Avouris, Physica E, 40, 228 (2007); https://doi.org/10.1016/j.physe.2007.06.020.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
- Deepshikha and T. Basu, Anal. Lett., 44, 1126 (2011); https://doi.org/10.1080/00032719.2010.511734.
- S. Liu, X. Liu, Z. Li, S. Yang and J. Wang, New J. Chem., 35, 369 (2011); https://doi.org/10.1039/C0NJ00718H.
- Y. Li, H. Peng, G. Li and K. Chen, Eur. Polym. J., 48, 1406 (2012); https://doi.org/10.1016/j.eurpolymj.2012.05.014.
- H. Mi, X. Zhang, S. Yang, X. Ye and J. Luo, Mater. Chem. Phys., 112, 127 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.022.
- X. Du, M. Xiao and Y. Meng, J. Polym. Sci., B, Polym. Phys., 42, 1972 (2004); https://doi.org/10.1002/polb.20102.
- N.A. Kumar, H. Choi, Y.R. Shin, D.W. Chang, L. Dai and J. Baek, ACS Nano, 6, 1715 (2012); https://doi.org/10.1021/nn204688c.
- G. Gheno, B. de Souza, N. Regina and R. Hübler, Macromol. Symp., 299-300, 74 (2011); https://doi.org/10.1002/masy.200900137.
- M. Kulkarni, B. Kale, S. Apte, S. Naik, U. Mulik and D. Amalnerkar, Chem. Chemical Technol., 5, 55 (2011).
References
M. Manoharan, Technol. Soc., 30, 401 (2008); https://doi.org/10.1016/j.techsoc.2008.04.016.
P.T. Anastas and M.M. Kirchhoff, Acc. Chem. Res., 35, 686 (2002); https://doi.org/10.1021/ar010065m.
G. Singh and A. Kumar, Ind. J. Chem., 47A, 495 (2008).
M.J. Earle and K.R. Seddon, Pure Appl. Chem., 72, 1391 (2000); https://doi.org/10.1351/pac200072071391.
B. Wu, W.W. Liu, Y.M. Zhang and H.P. Wang, Chem. Eur. J., 15, 1804 (2009); https://doi.org/10.1002/chem.200801509.
D. Han and K.H. Row, Molecules, 15, 2405 (2010); https://doi.org/10.3390/molecules15042405.
T. Welton, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t.
L. Jiang, X.P. Shen, J.L. Wu and K.C. Shen, J. Appl. Polym. Sci., 118, 275 (2010); https://doi.org/10.1002/app.32278.
K. Zhang, L.L. Zhang, X. Zhao and J. Wu, Chem. Mater., 22, 1392 (2010); https://doi.org/10.1021/cm902876u.
O.K. Park, T. Jeevananda, N.H. Kim, S. Kim and J.H. Lee, Scr. Mater., 60, 551 (2009); https://doi.org/10.1016/j.scriptamat.2008.12.005.
D. Li and R.B. Kaner, J. Am. Chem. Soc., 128, 968 (2006); https://doi.org/10.1021/ja056609n.
S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.B.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H.
N.A. Kotov, Nature, 442, 254 (2006); https://doi.org/10.1038/442254a.
H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977); https://doi.org/10.1039/c39770000578.
J. Huang, Pure Appl. Chem., 78, 15 (2006); https://doi.org/10.1351/pac200678010015.
A.S. Adekunle, J. Pillay and K.I. Ozoemena, Electrochim. Acta, 55, 4319 (2010); https://doi.org/10.1016/j.electacta.2009.02.102.
C.K. Das and A. Mandal, J. Mater. Sci. Res., 1, 45 (2012).
H. Wang, Q. Hao, X. Yang, L. Lu and X.A. Wang, Nanoscale, 2, 2164 (2010); https://doi.org/10.1039/c0nr00224k.
D.A. Skoog, F.J. Holler and S.R. Crouch, Instrumental Analysis, Brooks/Cole, Cengage Learning, edn 6 (2007).
C. Hammond, The Basics of Crystallography and Diffraction, International Union of Crystallography Texts on Crystallography: No. 3, (1997).
C. Hammond, Royal Microscopical Society Microscopy Handbooks: Introduction To Crystallography, Revised Edition, Oxford University Press, Oxford, UK (1992).
C. Harish, V.S. Sreeharsha, C. Santhosh, R. Ramachandran, M. Saranya, T.M. Vanchinathan, K. Govardhan and A.N. Grace, Adv. Sci. Eng. Med., 5, 140 (2013); https://doi.org/10.1166/asem.2013.1237.
W.L. Zhang, B.J. Park and H.J. Choi, Chem. Commun., 46, 5596 (2010); https://doi.org/10.1039/c0cc00557f.
Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J.R. Gong, J. Am. Chem. Soc., 133, 10878 (2011); https://doi.org/10.1021/ja2025454.
C. Dhand, M. Das, G. Sumana, A.K. Srivastava, M.K. Pandey, C.G. Kim, M. Datta and B.D. Malhotra, Nanoscale, 2, 747 (2010); https://doi.org/10.1039/b9nr00346k.
Y. Si and E.T. Samulski, Chem. Mater., 20, 6792 (2008); https://doi.org/10.1021/cm801356a.
C. Hontoria-Lucas, A. Lopez-Peinado, J.D. López-González, M. Rojas- Cervantes and R. Martin-Aranda, Carbon, 33, 1585 (1995); https://doi.org/10.1016/0008-6223(95)00120-3.
S. Goswami, U. Maiti, S. Maiti, S. Nandy, M. Mitra and K. Chattopadhyay, Carbon, 49, 2245 (2011); https://doi.org/10.1016/j.carbon.2011.01.055.
S. Ameen, M.S. Akhtar and H.S. Shin, Sensors Actuators B: Chem., 173, 177 (2012); https://doi.org/10.1016/j.snb.2012.06.065.
F. Thema, M. Moloto, E. Dikio, N. Nyangiwe, L. Kotsedi, M. Maaza and M. Khenfouch, J. Chem., Article ID 150536 (2012) https://doi.org/10.1155/2012/150536.
Q. Hao, H. Wang, X. Yang, L. Lu and X. Wang, Nano Res., 4, 323 (2011); https://doi.org/10.1007/s12274-010-0087-4.
P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth and A.K. Geim, Appl. Phys. Lett., 91, 063124 (2007); https://doi.org/10.1063/1.2768624.
S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari and F. Mauri, Nat. Mater., 6, 198 (2007); https://doi.org/10.1038/nmat1846.
Z. Chen, Y. Lin, Y.M.J. Rooks and P. Avouris, Physica E, 40, 228 (2007); https://doi.org/10.1016/j.physe.2007.06.020.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
Deepshikha and T. Basu, Anal. Lett., 44, 1126 (2011); https://doi.org/10.1080/00032719.2010.511734.
S. Liu, X. Liu, Z. Li, S. Yang and J. Wang, New J. Chem., 35, 369 (2011); https://doi.org/10.1039/C0NJ00718H.
Y. Li, H. Peng, G. Li and K. Chen, Eur. Polym. J., 48, 1406 (2012); https://doi.org/10.1016/j.eurpolymj.2012.05.014.
H. Mi, X. Zhang, S. Yang, X. Ye and J. Luo, Mater. Chem. Phys., 112, 127 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.022.
X. Du, M. Xiao and Y. Meng, J. Polym. Sci., B, Polym. Phys., 42, 1972 (2004); https://doi.org/10.1002/polb.20102.
N.A. Kumar, H. Choi, Y.R. Shin, D.W. Chang, L. Dai and J. Baek, ACS Nano, 6, 1715 (2012); https://doi.org/10.1021/nn204688c.
G. Gheno, B. de Souza, N. Regina and R. Hübler, Macromol. Symp., 299-300, 74 (2011); https://doi.org/10.1002/masy.200900137.
M. Kulkarni, B. Kale, S. Apte, S. Naik, U. Mulik and D. Amalnerkar, Chem. Chemical Technol., 5, 55 (2011).