Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation, Characterization and Photocatalytic Study of Sn/TiO2-Laponite
Corresponding Author(s) : Is Fatimah
Asian Journal of Chemistry,
Vol. 29 No. 5 (2017): Vol 29 Issue 5
Abstract
In this research, synthesis of Sn-doped TiO2/laponite and its application in photodegradation of rhodamine B was conducted. Material preparation was performed by two steps; TiO2 pillarization onto laponite structure and Sn dopping by mean microwave assisted dispersion. The effects of each step on the physical and chemical properties of the materials are reported. Sample was characterized by X-ray powder diffraction, specific surface area measurement by gas sorption analyzer, scanning electron microscopy and ultraviolet-visible diffuse reflectance spectroscopy. Results showed that Sn-dopped TiO2/laponite was succesfully synthesized with the formation of anatase phase homogeneously supported in laponite as matrix. Increasing specific surface area and the effective band gap energy at around 3.22 eV were the important character as photocatalyst. Subsequent photocatalytic studies of the degradation of rhodamine B under UV irradiation demonstrated that the modification had a positive effect on photocatalytic performance whereas the addition of 0.4 % Sn to TiO2/laponite enhanced photocatalytic activity. Compared to bulk-TiO2, TiO2/Laponite sample itself showed atom efficiency in that the degradation rate of rhodamine B by 10 % Ti was comparable with pure TiO2. Kinetics study on rhodamine B and the relationship with physico-chemical character of photocatalyst was also the focus of this study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Yao, S. Cao and K.L. Yeung, Micro. Meso. Mater., 117, 570 (2009); https://doi.org/10.1016/j.micromeso.2008.08.020.
- C. Liu, Z. Chen, Z. Miao, F. Chen, C. Gu, M. Huang and X. Zhao, Procedia Eng., 27, 557 (2012); https://doi.org/10.1016/j.proeng.2011.12.487.
- M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin and R. Aryal, J. Taiwan Inst. Chem. Eng., 50, 288 (2015); https://doi.org/10.1016/j.jtice.2014.12.013.
- L. Ma, J. Ji, F. Yu, N. Ai and H. Jiang, Micropor. Mesopor. Mater., 165, 6 (2013); https://doi.org/10.1016/j.micromeso.2012.05.005.
- M.N. Chong, Y.J. Cho, P.E. Poh and B. Jin, J. Clean. Prod., 89, 196 (2015); https://doi.org/10.1016/j.jclepro.2014.11.014.
- Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, Powder Technol., 274, 88 (2015); https://doi.org/10.1016/j.powtec.2014.12.052.
- M. Khairy and W. Zakaria, Egyptian J. Petrol., 23, 419 (2014); https://doi.org/10.1016/j.ejpe.2014.09.010.
- B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang and G. Liao, Nanoscale Res. Lett., 8, 462 (2013); https://doi.org/10.1186/1556-276X-8-462.
- F. Sayilkan, M. Asiltürk, P. Tatar, N. Kiraz, S. Sener, E. Arpaç and H. Sayilkan, Mater. Res. Bull., 43, 127 (2008); https://doi.org/10.1016/j.materresbull.2007.02.012.
- C. Wu, L. Shen, H. Yu, Q. Huang and Y.C. Zhang, Mater. Res. Bull., 46, 1107 (2011); https://doi.org/10.1016/j.materresbull.2011.02.043.
- Y. Liu, X. Chen, Y. Xu, Q. Zhang and X. Wang, J. Nanomater., Article ID 381819 (2014); https://doi.org/10.1155/2014/381819.
- S. Yang, J. Nam and Y. Kim, Bull. Korean Chem. Soc., 35, 1218 (2014); https://doi.org/10.5012/bkcs.2014.35.4.1218.
- T. Batista, A. Chiorcea-Paquim, A.M.O. Brett, C.C. Schmitt and M.G. Neumann, Appl. Clay Sci., 53, 27 (2011); https://doi.org/10.1016/j.clay.2011.04.007.
- S. Bagheri, K. Shameli and S.B.A. Hamid, J. Chem., Article ID 848205 (2013); https://doi.org/10.1155/2013/848205.
- C. Wang, H. Shi, P. Zhang and Y. Li, Appl. Clay Sci., 53, 646 (2011); https://doi.org/10.1016/j.clay.2011.05.017.
References
N. Yao, S. Cao and K.L. Yeung, Micro. Meso. Mater., 117, 570 (2009); https://doi.org/10.1016/j.micromeso.2008.08.020.
C. Liu, Z. Chen, Z. Miao, F. Chen, C. Gu, M. Huang and X. Zhao, Procedia Eng., 27, 557 (2012); https://doi.org/10.1016/j.proeng.2011.12.487.
M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin and R. Aryal, J. Taiwan Inst. Chem. Eng., 50, 288 (2015); https://doi.org/10.1016/j.jtice.2014.12.013.
L. Ma, J. Ji, F. Yu, N. Ai and H. Jiang, Micropor. Mesopor. Mater., 165, 6 (2013); https://doi.org/10.1016/j.micromeso.2012.05.005.
M.N. Chong, Y.J. Cho, P.E. Poh and B. Jin, J. Clean. Prod., 89, 196 (2015); https://doi.org/10.1016/j.jclepro.2014.11.014.
Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, Powder Technol., 274, 88 (2015); https://doi.org/10.1016/j.powtec.2014.12.052.
M. Khairy and W. Zakaria, Egyptian J. Petrol., 23, 419 (2014); https://doi.org/10.1016/j.ejpe.2014.09.010.
B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang and G. Liao, Nanoscale Res. Lett., 8, 462 (2013); https://doi.org/10.1186/1556-276X-8-462.
F. Sayilkan, M. Asiltürk, P. Tatar, N. Kiraz, S. Sener, E. Arpaç and H. Sayilkan, Mater. Res. Bull., 43, 127 (2008); https://doi.org/10.1016/j.materresbull.2007.02.012.
C. Wu, L. Shen, H. Yu, Q. Huang and Y.C. Zhang, Mater. Res. Bull., 46, 1107 (2011); https://doi.org/10.1016/j.materresbull.2011.02.043.
Y. Liu, X. Chen, Y. Xu, Q. Zhang and X. Wang, J. Nanomater., Article ID 381819 (2014); https://doi.org/10.1155/2014/381819.
S. Yang, J. Nam and Y. Kim, Bull. Korean Chem. Soc., 35, 1218 (2014); https://doi.org/10.5012/bkcs.2014.35.4.1218.
T. Batista, A. Chiorcea-Paquim, A.M.O. Brett, C.C. Schmitt and M.G. Neumann, Appl. Clay Sci., 53, 27 (2011); https://doi.org/10.1016/j.clay.2011.04.007.
S. Bagheri, K. Shameli and S.B.A. Hamid, J. Chem., Article ID 848205 (2013); https://doi.org/10.1155/2013/848205.
C. Wang, H. Shi, P. Zhang and Y. Li, Appl. Clay Sci., 53, 646 (2011); https://doi.org/10.1016/j.clay.2011.05.017.