Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Determination of Paracetamol Based on Graphene-TiO2 Modified Glassy Carbon Electrode
Corresponding Author(s) : T. Jyothish Kumar
Asian Journal of Chemistry,
Vol. 29 No. 5 (2017): Vol 29 Issue 5
Abstract
A novel voltametric sensor based on graphene-TiO2 was developed. The graphene-TiO2 nanocomposite was prepared by the hydrothermal treatment. It provides an efficient and facile approach to yield nanocomposite with TiO2 nanoparticles uniformly embedded on graphene substrate. The crystallinity and crystalline size were examined by XRD and TEM. The surface morphology of the nanocomposite is examined by SEM. The crystalline size of the as prepared nanocomposite was 17 nm. The electrochemical behaviour of paracetamol was investigated with this sensor. The graphene-TiO2 modified electrode exhibited a linear response in differential pulse voltametry, with the detection limit of 11.38 × 10-8 M.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036.
- D.K. Kampouris and C.E. Banks, Chem. Commun., 46, 8986 (2010); https://doi.org/10.1039/c0cc02860f.
- S. Wu, Q. He, C. Tan, Y. Wang and H. Zhang, Small, 9, 1160 (2013); https://doi.org/10.1002/smll.201202896.
- A. Ambrosi, C.K. Chua, A. Bonanni and M. Pumera, Chem. Rev., 114, 7150 (2014); https://doi.org/10.1021/cr500023c.
- W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai and G. Shi, Sci. Rep., 3, 2248 (2013); https://doi.org/10.1038/srep02248.
- D.A. Brownson, L.J. Munro, D.K. Kampouris and C.E. Banks, RSC Adv., 1, 978 (2011); https://doi.org/10.1039/c1ra00393c.
- D.A. Brownson, C.W. Foster and C.E. Banks, Analyst, 137, 1815 (2012); https://doi.org/10.1039/c2an16279b.
- M. Pumera, Chem. Soc. Rev., 39, 4146 (2010); https://doi.org/10.1039/c002690p.
- X. Chen, G. Wu, Y. Jiang, Y. Wang and X. Chen, Analyst, 136, 4631 (2011); https://doi.org/10.1039/c1an15661f.
- M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 81, 5603 (2009); https://doi.org/10.1021/ac900136z.
- P.V. Kamat, J. Phys. Chem. Lett., 1, 520 (2010); https://doi.org/10.1021/jz900265j.
- D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 39, 3157 (2010); https://doi.org/10.1039/b923596e.
- M. Pumera, Chem. Soc. Rev., 39, 4146 (2010); https://doi.org/10.1039/c002690p.
- Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang and Y. Lin, J. Power Sources, 195, 4600 (2010); https://doi.org/10.1016/j.jpowsour.2010.02.044.
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k.
- L. Dong, R.R.S. Gari, Z. Li, M.M. Craig and S. Hou, Carbon, 48, 781 (2010); https://doi.org/10.1016/j.carbon.2009.10.027.
- S. Guo, D. Wen, Y. Zhai, S. Dong and E. Wang, ACS Nano, 4, 3959 (2010); https://doi.org/10.1021/nn100852h.
- C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, Biosens. Bioelectron., 25, 1070 (2010); https://doi.org/10.1016/j.bios.2009.09.024.
- Y. Li, L. Tang and J. Li, Electrochem. Commun., 11, 846 (2009); https://doi.org/10.1016/j.elecom.2009.02.009.
- Y. Zhang, H. Li, L. Pan, T. Lu and Z. Sun, J. Electroanal. Chem., 634, 68 (2009); https://doi.org/10.1016/j.jelechem.2009.07.010.
- D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay and J. Liu, ACS Nano, 3, 907 (2009); https://doi.org/10.1021/nn900150y.
- K. Wang, Q. Liu, X.Y. Wu, Q.M. Guan and H.N. Li, Talanta, 82, 372 (2010); https://doi.org/10.1016/j.talanta.2010.04.054.
- E. Topoglidis, C.J. Campbell, A.E.G. Cass and J.R. Durrant, Langmuir, 17, 7899 (2001); https://doi.org/10.1021/la010309b.
- S. Liu and A. Chen, Langmuir, 21, 8409 (2005); https://doi.org/10.1021/la050875x.
- A. Liu, M. Wei, I. Honma and H. Zhou, Adv. Funct. Mater., 16, 371 (2006); https://doi.org/10.1002/adfm.200500202.
- S.J. Bao, C.M. Li, J.F. Zang, X.Q. Cui, Y. Qiao and J. Guo, Adv. Funct. Mater., 18, 591 (2008); https://doi.org/10.1002/adfm.200700728.
- Y. Luo, H. Liu, Q. Rui and Y. Tian, Anal. Chem., 81, 3035 (2009); https://doi.org/10.1021/ac802721x.
- H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks and K. Wu, Electrochem. Commun., 11, 1990 (2009); https://doi.org/10.1016/j.elecom.2009.08.034.
- Y. Luo, Y. Tian, A. Zhu, Q. Rui and H. Liu, Electrochem. Commun., 11, 174 (2009); https://doi.org/10.1016/j.elecom.2008.10.056.
- N.F. Atta, A. Galal, F.M. Abu-Attia and S.M. Azab, J. Mater. Chem., 21, 13015 (2011); https://doi.org/10.1039/c1jm11795e.
References
W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036.
D.K. Kampouris and C.E. Banks, Chem. Commun., 46, 8986 (2010); https://doi.org/10.1039/c0cc02860f.
S. Wu, Q. He, C. Tan, Y. Wang and H. Zhang, Small, 9, 1160 (2013); https://doi.org/10.1002/smll.201202896.
A. Ambrosi, C.K. Chua, A. Bonanni and M. Pumera, Chem. Rev., 114, 7150 (2014); https://doi.org/10.1021/cr500023c.
W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai and G. Shi, Sci. Rep., 3, 2248 (2013); https://doi.org/10.1038/srep02248.
D.A. Brownson, L.J. Munro, D.K. Kampouris and C.E. Banks, RSC Adv., 1, 978 (2011); https://doi.org/10.1039/c1ra00393c.
D.A. Brownson, C.W. Foster and C.E. Banks, Analyst, 137, 1815 (2012); https://doi.org/10.1039/c2an16279b.
M. Pumera, Chem. Soc. Rev., 39, 4146 (2010); https://doi.org/10.1039/c002690p.
X. Chen, G. Wu, Y. Jiang, Y. Wang and X. Chen, Analyst, 136, 4631 (2011); https://doi.org/10.1039/c1an15661f.
M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 81, 5603 (2009); https://doi.org/10.1021/ac900136z.
P.V. Kamat, J. Phys. Chem. Lett., 1, 520 (2010); https://doi.org/10.1021/jz900265j.
D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 39, 3157 (2010); https://doi.org/10.1039/b923596e.
M. Pumera, Chem. Soc. Rev., 39, 4146 (2010); https://doi.org/10.1039/c002690p.
Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang and Y. Lin, J. Power Sources, 195, 4600 (2010); https://doi.org/10.1016/j.jpowsour.2010.02.044.
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k.
L. Dong, R.R.S. Gari, Z. Li, M.M. Craig and S. Hou, Carbon, 48, 781 (2010); https://doi.org/10.1016/j.carbon.2009.10.027.
S. Guo, D. Wen, Y. Zhai, S. Dong and E. Wang, ACS Nano, 4, 3959 (2010); https://doi.org/10.1021/nn100852h.
C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, Biosens. Bioelectron., 25, 1070 (2010); https://doi.org/10.1016/j.bios.2009.09.024.
Y. Li, L. Tang and J. Li, Electrochem. Commun., 11, 846 (2009); https://doi.org/10.1016/j.elecom.2009.02.009.
Y. Zhang, H. Li, L. Pan, T. Lu and Z. Sun, J. Electroanal. Chem., 634, 68 (2009); https://doi.org/10.1016/j.jelechem.2009.07.010.
D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay and J. Liu, ACS Nano, 3, 907 (2009); https://doi.org/10.1021/nn900150y.
K. Wang, Q. Liu, X.Y. Wu, Q.M. Guan and H.N. Li, Talanta, 82, 372 (2010); https://doi.org/10.1016/j.talanta.2010.04.054.
E. Topoglidis, C.J. Campbell, A.E.G. Cass and J.R. Durrant, Langmuir, 17, 7899 (2001); https://doi.org/10.1021/la010309b.
S. Liu and A. Chen, Langmuir, 21, 8409 (2005); https://doi.org/10.1021/la050875x.
A. Liu, M. Wei, I. Honma and H. Zhou, Adv. Funct. Mater., 16, 371 (2006); https://doi.org/10.1002/adfm.200500202.
S.J. Bao, C.M. Li, J.F. Zang, X.Q. Cui, Y. Qiao and J. Guo, Adv. Funct. Mater., 18, 591 (2008); https://doi.org/10.1002/adfm.200700728.
Y. Luo, H. Liu, Q. Rui and Y. Tian, Anal. Chem., 81, 3035 (2009); https://doi.org/10.1021/ac802721x.
H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks and K. Wu, Electrochem. Commun., 11, 1990 (2009); https://doi.org/10.1016/j.elecom.2009.08.034.
Y. Luo, Y. Tian, A. Zhu, Q. Rui and H. Liu, Electrochem. Commun., 11, 174 (2009); https://doi.org/10.1016/j.elecom.2008.10.056.
N.F. Atta, A. Galal, F.M. Abu-Attia and S.M. Azab, J. Mater. Chem., 21, 13015 (2011); https://doi.org/10.1039/c1jm11795e.