Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Chemical Pretreatment Method for Bio-ethanol Production from Rice Straw
Corresponding Author(s) : Renu Singh
Asian Journal of Chemistry,
Vol. 29 No. 5 (2017): Vol 29 Issue 5
Abstract
Continuous depletion in fossil fuel reserves and their contribution towards greenhouse gas emissions compelled the scientist to explore renewable sources of energy. Abundance of rice straw and its poor utilization is one major research question addressed through the present research work. The microwave assisted chemical treatment for Indian rice straw for bio-ethanol production has not been investigated so far and present study has provided insight in to the area of research. In the present research work, feasibility of microwave assisted alkali, acid and peroxide pretreatment has been investigated for rice straw. Mainly three chemicals NaOH, H2SO4 and H2O2 have been used. It has been found that the combination of microwave pretreatment with H2O2, H2SO4 and NaOH enhances the saccharification of rice straw, respectively by removing lignin and hemicelluloses in large quantity. Maximum reducing sugar is found through H2O2-microwave pretreatment (1453.64 μg/mL). SEM images also confirmed that the surface of the samples treated with microwave assisted H2O2 were more ruptured than H2SO4 and NaOH. It becomes quite evident from experimental analysis that the enzymatic saccharification of rice straw can be assisted with microwave-chemical pretreatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science, 311, 484 (2006); https://doi.org/10.1126/science.1114736.
- S.A. Ravoof, K. Prateepa, T. Supassri and S. Chittibabu, Int. J. Med. Biosci., 1, 13 (2012).
- X.B. Zhao, L. Wang and D. Liu, J. Chem. Technol. Biotechnol., 82, 1115 (2007); https://doi.org/10.1002/jctb.1775.
- R.C. Sun, Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Elsevier Publications, Amsterdam, The Netherlands (2010).
- R. Singh, A. Shukla, S. Tiwari and M. Srivastava, Renew. Sustain. Energy Rev., 32, 713 (2014); https://doi.org/10.1016/j.rser.2014.01.051.
- B. Gadde, C. Menke and R. Wassmann, Biomass Bioenergy, 33, 1532 (2009); https://doi.org/10.1016/j.biombioe.2009.07.018.
- G. Gong, D. Liu and Y. Huang, Biosyst. Eng., 107, 67 (2010); https://doi.org/10.1016/j.biosystemseng.2010.05.012.
- Y. Sun and J. Cheng, Bioresour. Technol., 83, 1 (2002); https://doi.org/10.1016/S0960-8524(01)00212-7.
- S.D. Zhu, Ph.D. Thesis, Pretreatment by Microwave/Alkali of Rice Straw and Its Saccharification and Fermentation Ethanol Production, Huazhong Agriculture University, Wuhan, China (2005).
- K. Karimi, G. Emtiazi and M.J. Taherzadeh, Enzyme Microb. Technol., 40, 138 (2006); https://doi.org/10.1016/j.enzmictec.2005.10.046.
- C.G. Liu and C.E. Wyman, Bioresour. Technol., 96, 1978 (2005); https://doi.org/10.1016/j.biortech.2005.01.012.
- L.T. Fan, Y.H. Lee and M.M. Gharpuray, Adv. Biochem. Eng., 23, 157 (1982).
- S. Zhu, Y. Wu, Z. Yu, J. Liao and Y. Zhang, Process Biochem., 40, 3082 (2005); https://doi.org/10.1016/j.procbio.2005.03.016.
- J. Azuma, F. Tanaka and T. Koshijima, J. Ferment. Technol., 63, 377 (1984).
- H. Ooshima, K. Aso, Y. Harano and T. Yamamoto, Biotechnol. Lett., 6, 289 (1984); https://doi.org/10.1007/BF00129056.
- P. Intanakul, M. Krairiksh and P. Kitchaiya, J. Wood Chem. Technol., 23, 217 (2003); https://doi.org/10.1081/WCT-120021926.
- R.E. Newnham, S.J. Jang, M. Xu and F. Jones, in eds.: D.E. Clark, F.D. Gac and W.H. Sutton, Fundamental Interaction Mechanisms Between Microwaves and Matter, In: Ceramic Tranctions, Microwaves: Theory and Application in Materials Processing, America Ceramic Society, Westerville, Ohio, vol. 21 (1991).
- C. Eskicioglu, K.J. Kennedy and R.L. Droste, Water Environ. Res., 79, 2304 (2007); https://doi.org/10.2175/106143007X184069.
- C. Eskicioglu, N. TerZian, K.J. Kennedy, R.L. Droste and M. Hamoda, Water Res., 41, 2457 (2007); https://doi.org/10.1016/j.watres.2007.03.008.
- M.J. Taherzadeh and K. Karimi, Int. J. Mol. Sci., 9, 1621 (2008); https://doi.org/10.3390/ijms9091621.
- P. Alvira, E. Tomas-Pejo, M. Ballesteros and M.J. Negro, Bioresour. Technol., 101, 4851 (2010); https://doi.org/10.1016/j.biortech.2009.11.093.
- J. Shi, Y. Pu, B. Yang, A. Ragauskas and C.E. Wyman, Bioresour. Technol., 102, 5952 (2011); https://doi.org/10.1016/j.biortech.2011.03.027.
- D. Jackowiak, J.C. Frigon, T. Ribeiro, A. Pauss and G. Guiot, Bioresour. Technol., 102, 3535 (2011); https://doi.org/10.1016/j.biortech.2010.11.069.
- J. Gabhane, S.P.M. Prince William, A.N. Vaiya, K. Mahapatra and T. Chakrabarti, Biomass Bioenergy, 35, 96 (2011); https://doi.org/10.1016/j.biombioe.2010.08.026.
- Z. Hu and Z. Wen, Biochem. Eng. J., 38, 369 (2008); https://doi.org/10.1016/j.bej.2007.08.001.
- R. Choudhary, A.L. Umagiliyage, Y. Liang, T. Siddaramu, J. Haddock and G. Markevicius, Biomass Bioenergy, 39, 218 (2012); https://doi.org/10.1016/j.biombioe.2012.01.006.
- S. Zhu, Y. Wu, Z. Yu, X. Zhang, H. Li and M. Gao, Bioresour. Technol., 97, 1964 (2006); https://doi.org/10.1016/j.biortech.2005.08.008.
- S.L.C. Ferreira, R.E. Bruns, E.G.P. da Silva, W.N.L. dos Santos, C.M. Quintella, J.M. David, J.B. de Andrade, M.C. Breitkreitz, I.C.S.F. Jardim and B.B. Neto, J. Chromatogr. A, 1158, 2 (2007); https://doi.org/10.1016/j.chroma.2007.03.051.
- B.L. Manjunath, H.R. Prabhu Desai, S. Talaulikar and V.S. Korikanthimath, Indian J. Agric. Sci., 8, 78 (2008).
- M. Saritha, A. Arora and L. Nain, Bioresour. Technol., 104, 459 (2012); https://doi.org/10.1016/j.biortech.2011.10.043.
- G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
- L. Segal, J. Creely, A. Martin and C. Conrad, Text. Res. J., 29, 786 (1959); https://doi.org/10.1177/004051755902901003.
- E. Gumuskaya and M. Usta, Turk. J. Agric. For., 26, 247 (2002).
- T. Ehrman, Determination of Acid-soluble Lignin in Biomass, NREL Chemical Analysis and Testing Task Laboratory Analytical Procedure- 004, pp 1-7 (1996).
- A.L. Pometto III and D.L. Crawford, Appl. Environ. Microbiol., 51, 171 (1986).
- C. Namasivayam and D.I.R. Kavitha, Microchem. J., 82, 43 (2006); https://doi.org/10.1016/j.microc.2005.07.002.
- J. Xu, H. Chen, Z. Kádár, A.B. Thomsen, J.E. Schmidt and H. Peng, Biomass Bioenergy, 35, 3859 (2011); https://doi.org/10.1016/j.biombioe.2011.04.054.
- J. Lu and P. Zhou, Bioresour. Technol., 102, 6966 (2011); https://doi.org/10.1016/j.biortech.2011.04.044.
- H. Ma, W.-W. Liu, X. Chen, Y.-J. Wu and Z.-L. Yu, Bioresour. Technol., 100, 1279 (2009); https://doi.org/10.1016/j.biortech.2008.08.045.
- T. Rezanka and K. Sigler, Phytochemistry, 69, 585 (2008); https://doi.org/10.1016/j.phytochem.2007.09.018.
- T.H. Kim and Y.Y. Lee, Bioresour. Technol., 96, 2007 (2005); https://doi.org/10.1016/j.biortech.2005.01.015.
- J.P. O’ Dwyer, L. Zhu, C.B. Granda and M.T. Holtzapple, Bioresour. Technol., 98, 2969 (2007); https://doi.org/10.1016/j.biortech.2006.10.014.
- N. Mosier, C.E. Wyman, B.E. Dale, R.T. Elander, Y.Y. Lee, M. Holtzapple and M.R. Ladisch, Bioresour. Technol., 96, 673 (2005); https://doi.org/10.1016/j.biortech.2004.06.025.
- T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney and D.K. Johnson, Biotechnol. Bioeng., 98, 112 (2007); https://doi.org/10.1002/bit.21408.
- C.T. Yu, W.H. Chen, L.C. Men and W.S. Hwang, Ind. Crops Prod., 29, 308 (2009); https://doi.org/10.1016/j.indcrop.2008.06.005.
- V.S. Chang and M.T. Holtzapple, Appl. Biochem. Biotechnol., 84-86, 5 (2000); https://doi.org/10.1385/ABAB:84-86:1-9:5.
- S. Kim and M.T. Holtzapple, Bioresour. Technol., 97, 583 (2006); https://doi.org/10.1016/j.biortech.2005.03.040.
- J.S. Bak, J.K. Ko, Y.H. Han, B.C. Lee, I.-G. Choi and K.H. Kim, Bioresour. Technol., 100, 1285 (2009); https://doi.org/10.1016/j.biortech.2008.09.010.
- L. Liu, J.S. Sun, M. Li, S.H. Wang, H.S. Pei and J.S. Zhang, Bioresour. Technol., 100, 5853 (2009); https://doi.org/10.1016/j.biortech.2009.06.040.
- D. Vamvuka, Int. J. Energy Res., 35, 835 (2011); https://doi.org/10.1002/er.1804.
- W.H. Chen, Y.J. Tu and H.K. Sheen, Int. J. Energy Res., 34, 265 (2010); https://doi.org/10.1002/er.1566.
References
A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science, 311, 484 (2006); https://doi.org/10.1126/science.1114736.
S.A. Ravoof, K. Prateepa, T. Supassri and S. Chittibabu, Int. J. Med. Biosci., 1, 13 (2012).
X.B. Zhao, L. Wang and D. Liu, J. Chem. Technol. Biotechnol., 82, 1115 (2007); https://doi.org/10.1002/jctb.1775.
R.C. Sun, Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Elsevier Publications, Amsterdam, The Netherlands (2010).
R. Singh, A. Shukla, S. Tiwari and M. Srivastava, Renew. Sustain. Energy Rev., 32, 713 (2014); https://doi.org/10.1016/j.rser.2014.01.051.
B. Gadde, C. Menke and R. Wassmann, Biomass Bioenergy, 33, 1532 (2009); https://doi.org/10.1016/j.biombioe.2009.07.018.
G. Gong, D. Liu and Y. Huang, Biosyst. Eng., 107, 67 (2010); https://doi.org/10.1016/j.biosystemseng.2010.05.012.
Y. Sun and J. Cheng, Bioresour. Technol., 83, 1 (2002); https://doi.org/10.1016/S0960-8524(01)00212-7.
S.D. Zhu, Ph.D. Thesis, Pretreatment by Microwave/Alkali of Rice Straw and Its Saccharification and Fermentation Ethanol Production, Huazhong Agriculture University, Wuhan, China (2005).
K. Karimi, G. Emtiazi and M.J. Taherzadeh, Enzyme Microb. Technol., 40, 138 (2006); https://doi.org/10.1016/j.enzmictec.2005.10.046.
C.G. Liu and C.E. Wyman, Bioresour. Technol., 96, 1978 (2005); https://doi.org/10.1016/j.biortech.2005.01.012.
L.T. Fan, Y.H. Lee and M.M. Gharpuray, Adv. Biochem. Eng., 23, 157 (1982).
S. Zhu, Y. Wu, Z. Yu, J. Liao and Y. Zhang, Process Biochem., 40, 3082 (2005); https://doi.org/10.1016/j.procbio.2005.03.016.
J. Azuma, F. Tanaka and T. Koshijima, J. Ferment. Technol., 63, 377 (1984).
H. Ooshima, K. Aso, Y. Harano and T. Yamamoto, Biotechnol. Lett., 6, 289 (1984); https://doi.org/10.1007/BF00129056.
P. Intanakul, M. Krairiksh and P. Kitchaiya, J. Wood Chem. Technol., 23, 217 (2003); https://doi.org/10.1081/WCT-120021926.
R.E. Newnham, S.J. Jang, M. Xu and F. Jones, in eds.: D.E. Clark, F.D. Gac and W.H. Sutton, Fundamental Interaction Mechanisms Between Microwaves and Matter, In: Ceramic Tranctions, Microwaves: Theory and Application in Materials Processing, America Ceramic Society, Westerville, Ohio, vol. 21 (1991).
C. Eskicioglu, K.J. Kennedy and R.L. Droste, Water Environ. Res., 79, 2304 (2007); https://doi.org/10.2175/106143007X184069.
C. Eskicioglu, N. TerZian, K.J. Kennedy, R.L. Droste and M. Hamoda, Water Res., 41, 2457 (2007); https://doi.org/10.1016/j.watres.2007.03.008.
M.J. Taherzadeh and K. Karimi, Int. J. Mol. Sci., 9, 1621 (2008); https://doi.org/10.3390/ijms9091621.
P. Alvira, E. Tomas-Pejo, M. Ballesteros and M.J. Negro, Bioresour. Technol., 101, 4851 (2010); https://doi.org/10.1016/j.biortech.2009.11.093.
J. Shi, Y. Pu, B. Yang, A. Ragauskas and C.E. Wyman, Bioresour. Technol., 102, 5952 (2011); https://doi.org/10.1016/j.biortech.2011.03.027.
D. Jackowiak, J.C. Frigon, T. Ribeiro, A. Pauss and G. Guiot, Bioresour. Technol., 102, 3535 (2011); https://doi.org/10.1016/j.biortech.2010.11.069.
J. Gabhane, S.P.M. Prince William, A.N. Vaiya, K. Mahapatra and T. Chakrabarti, Biomass Bioenergy, 35, 96 (2011); https://doi.org/10.1016/j.biombioe.2010.08.026.
Z. Hu and Z. Wen, Biochem. Eng. J., 38, 369 (2008); https://doi.org/10.1016/j.bej.2007.08.001.
R. Choudhary, A.L. Umagiliyage, Y. Liang, T. Siddaramu, J. Haddock and G. Markevicius, Biomass Bioenergy, 39, 218 (2012); https://doi.org/10.1016/j.biombioe.2012.01.006.
S. Zhu, Y. Wu, Z. Yu, X. Zhang, H. Li and M. Gao, Bioresour. Technol., 97, 1964 (2006); https://doi.org/10.1016/j.biortech.2005.08.008.
S.L.C. Ferreira, R.E. Bruns, E.G.P. da Silva, W.N.L. dos Santos, C.M. Quintella, J.M. David, J.B. de Andrade, M.C. Breitkreitz, I.C.S.F. Jardim and B.B. Neto, J. Chromatogr. A, 1158, 2 (2007); https://doi.org/10.1016/j.chroma.2007.03.051.
B.L. Manjunath, H.R. Prabhu Desai, S. Talaulikar and V.S. Korikanthimath, Indian J. Agric. Sci., 8, 78 (2008).
M. Saritha, A. Arora and L. Nain, Bioresour. Technol., 104, 459 (2012); https://doi.org/10.1016/j.biortech.2011.10.043.
G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
L. Segal, J. Creely, A. Martin and C. Conrad, Text. Res. J., 29, 786 (1959); https://doi.org/10.1177/004051755902901003.
E. Gumuskaya and M. Usta, Turk. J. Agric. For., 26, 247 (2002).
T. Ehrman, Determination of Acid-soluble Lignin in Biomass, NREL Chemical Analysis and Testing Task Laboratory Analytical Procedure- 004, pp 1-7 (1996).
A.L. Pometto III and D.L. Crawford, Appl. Environ. Microbiol., 51, 171 (1986).
C. Namasivayam and D.I.R. Kavitha, Microchem. J., 82, 43 (2006); https://doi.org/10.1016/j.microc.2005.07.002.
J. Xu, H. Chen, Z. Kádár, A.B. Thomsen, J.E. Schmidt and H. Peng, Biomass Bioenergy, 35, 3859 (2011); https://doi.org/10.1016/j.biombioe.2011.04.054.
J. Lu and P. Zhou, Bioresour. Technol., 102, 6966 (2011); https://doi.org/10.1016/j.biortech.2011.04.044.
H. Ma, W.-W. Liu, X. Chen, Y.-J. Wu and Z.-L. Yu, Bioresour. Technol., 100, 1279 (2009); https://doi.org/10.1016/j.biortech.2008.08.045.
T. Rezanka and K. Sigler, Phytochemistry, 69, 585 (2008); https://doi.org/10.1016/j.phytochem.2007.09.018.
T.H. Kim and Y.Y. Lee, Bioresour. Technol., 96, 2007 (2005); https://doi.org/10.1016/j.biortech.2005.01.015.
J.P. O’ Dwyer, L. Zhu, C.B. Granda and M.T. Holtzapple, Bioresour. Technol., 98, 2969 (2007); https://doi.org/10.1016/j.biortech.2006.10.014.
N. Mosier, C.E. Wyman, B.E. Dale, R.T. Elander, Y.Y. Lee, M. Holtzapple and M.R. Ladisch, Bioresour. Technol., 96, 673 (2005); https://doi.org/10.1016/j.biortech.2004.06.025.
T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney and D.K. Johnson, Biotechnol. Bioeng., 98, 112 (2007); https://doi.org/10.1002/bit.21408.
C.T. Yu, W.H. Chen, L.C. Men and W.S. Hwang, Ind. Crops Prod., 29, 308 (2009); https://doi.org/10.1016/j.indcrop.2008.06.005.
V.S. Chang and M.T. Holtzapple, Appl. Biochem. Biotechnol., 84-86, 5 (2000); https://doi.org/10.1385/ABAB:84-86:1-9:5.
S. Kim and M.T. Holtzapple, Bioresour. Technol., 97, 583 (2006); https://doi.org/10.1016/j.biortech.2005.03.040.
J.S. Bak, J.K. Ko, Y.H. Han, B.C. Lee, I.-G. Choi and K.H. Kim, Bioresour. Technol., 100, 1285 (2009); https://doi.org/10.1016/j.biortech.2008.09.010.
L. Liu, J.S. Sun, M. Li, S.H. Wang, H.S. Pei and J.S. Zhang, Bioresour. Technol., 100, 5853 (2009); https://doi.org/10.1016/j.biortech.2009.06.040.
D. Vamvuka, Int. J. Energy Res., 35, 835 (2011); https://doi.org/10.1002/er.1804.
W.H. Chen, Y.J. Tu and H.K. Sheen, Int. J. Energy Res., 34, 265 (2010); https://doi.org/10.1002/er.1566.