Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation of Vanadium(III) to Vanadium(IV) by Thioredoxin and L-Serine Contemplating the in vitro Redox Behavior of Vanadium in the Vanadocyte of Ascidians
Corresponding Author(s) : M.K. Islam
Asian Journal of Chemistry,
Vol. 29 No. 2 (2017): Vol 29 Issue 2
Abstract
Ascidians are known to accumulate high levels of vanadium from sea water, in their blood cells, called vanadocytes. To evaluate the fact whether the total accumulation process of vanadium by ascidians are redox or not, and to justify the subsistence of trace extent of vanadium(IV) with large extent of vanadium(III) in the vanadocyte of ascidians. The oxidation behaviour of vanadium(III) to vanadium(IV) followed by series of amino acids and thioredoxin were investigated. UV-visible and electron spin resonance (ESR) spectroscopy revealed that thioredoxin and only serine (L-Ser) assist very fast oxidation having adoption the physiological pH (4.0-5.5) region relevant to vanadocyte. Specially, amino acids favour the oxidation of vanadium(III) which have the low stability constant with vanadium(III) and larger stability constant with vanadium(IV), i.e., log K1 and log K2 >10.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, edn 2, pp. 999 (2011).
- N.D. Chasteen, Biochemistry of Vanadium, Springer: Berlin/Heidelberg/New York, p. 105 (1983).
- K. Kustin, G.C. Mcleod, T.R. Gilbert and L.B.R. Brigs, Vanadium and Other Metal Ions in the Physiological Ecology of Marine Organisms, Springer: Berlin/Heidelberg/New York, p. 139 (1983).
- M. Henze, Hoppe Seylers Z. Physiol. Chem., 72, 494 (1911).
- G.C. McLeod, K.V. Ladd, K. Kustin and D.L. Toppen, Limnol. Oceanogr., 20, 491 (1975).
- R.M.K. Carlson, Proc. Natl. Acad. Sci. USA, 72, 2217 (1975).
- J. Hirata and H. Michibata, J. Exp. Zool., 257, 160 (1991).
- H. Michibata, T. Uyama, T. Ueki and K. Kanamori, Microsc. Res. Tech., 56, 421 (2002).
- H. Michibata and K. Kanamori, Vanadium in the Environment, Wiley-Interscience: New York, Part 1, p. 217 (1998).
- S.G. Brand, N. Edelstein, C.J. Hawkins, G. Shalimoff, M.R. Snow and E.R.T. Tiekink, Inorg. Chem., 29, 434 (1990).
- H. Michibata, Y. Iwata and J. Hirata, J. Exp. Zool., 257, 306 (1991).
- T.D. Tullius, W.O. Gillum, R.M.K. Carlson and K.O. Hodgson, J. Am. Chem. Soc., 102, 5670 (1980).
- A.L. Dingley, K. Kustin, I.G. Macara and G.C. McLeod, Biochim. Biophys. Acta, 649, 493 (1981).
- P. Frank, R.M.K. Carlson and K.O. Hodgson, Inorg. Chem., 25, 470 (1986).
- S. Lee, K. Kustin, W.E. Robinson, R.B. Frankel and K. Spartalian, J. Inorg. Biochem., 33, 183 (1988).
- M. Henze, Hoppe Seylers Z. Physiol. Chem., 79, 215 (1912).
- M. Henze, Hoppe Seylers Z. Physiol. Chem., 88, 345 (1913).
- M. Henze, Hoppe Seylers Z. Physiol. Chem., 213, 125 (1932).
- H. Michibata, T. Uyama, T. Ueki and K. Kanamori, in eds.: H. Sawada, H. Yokosawa and C.C. Lambert, The Biology of Ascidian, Springer Verlag, p. 363 (2001).
- H. Michibata, N. Yamaguchi, U. Uyama and T. Ueki, Coord. Chem. Rev., 237, 41 (2003).
- P.C. Wilkins, M.D. Johnson, A.A. Holder and D.C. Crans, Inorg. Chem., 45, 1471 (2006).
- X. Shi, D.C. Flynn, K. Liu and N. Dalal, Ann. Clin. Lab. Sci., 27, 422 (1997).
- K. Kanamori, M. Sakurai, T. Kinoshita, T. Uyama, T. Ueki and H. Michibata, J. Inorg. Biochem., 77, 157 (1999).
- K. Kanamori, Y. Kinebuchi and H. Michibata, Chem. Lett., 26, 423 (1997).
- M.K. Islam, C. Tsuboya, H. Kusaka, S. Aizawa, T. Ueki, H. Michibata and K. Kanamori, Biochim. Biophys. Acta, 1770, 1212 (2007).
- M.K. Islam, M.M. Hossain and K. Kanamori, Int. J. Inorg. Bioinorg. Chem., 3, 1 (2013).
- T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori and H. Michibata, Biochim. Biophys. Acta, 1626, 43 (2003).
- N. Yamaguchi, K. Kamino, T. Ueki and H. Michibata, Mar. Biotechnol., 6, 165 (2004).
- M. Yoshihara, T. Ueki, T. Watanabe, N. Yamaguchi, K. Kamino and H. Michibata, Biochim. Biophys. Acta, 1730, 206 (2005).
- K. Fukui, T. Ueki, H. Ohya and H. Michibata, J. Am. Chem. Soc., 125, 6352 (2003).
- T. Kanda, Y. Nose, J. Wuchiyama, T. Uyama, Y. Moriyama and H. Michibata, Zoolog. Sci., 14, 37 (1997).
- T. Hamada, M. Asanuma, T. Ueki, F. Hayashi, N. Kobayashi, S. Yokoyama, H. Michibata and H. Hirota, J. Am. Chem. Soc., 127, 4216 (2005).
- W.A. Prinz, F. Aslund, A. Holmgren and J. Beckwith, J. Biol. Chem., 272, 15661 (1997).
- H. Choi, S. Kim, P. Mukhopadhyay, S. Cho, J. Woo, G. Storz and S.E. Ryu, Cell, 105, 103 (2001).
- U. Jakob, W. Muse, M. Eser and J.C.A. Bardwell, Cell, 96, 341 (1999).
- D. Shriver and P. Atkins, Inorganic Chemistry, Freeman: New York, edn 3, p. 702 (1999).
- D.H. Anderson and J.H. Swinehart, Comp. Biochem. Physiol., 99A, 585 (1991).
- M. Rangel, A. Tamura, C. Fukushima and H. Sakurai, J. Biol. Inorg. Chem., 6, 128 (2001).
- P.R. Klich, A.T. Daniher, P.R. Challen, D.B. McConville and W.J. Youngs, Inorg. Chem., 35, 347 (1996).
- A. Katoh, K. Taguchi, H. Okada, M. Harata, Y. Fujisawa, T. Takino and H. Sakurai, Chem. Lett., 29, 866 (2000).
- N.D. Chasteen, in eds.: L. Berliner and J. Reuben, Biological Magnetic Resonance, Plenum Press, New York, vol. 3, p. 53 (1981).
- T.S. Smith II, R. LoBrutto and V.L. Pecoraro, Coord. Chem. Rev., 228, 1 (2002).
- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations, Wiley-Interscience, New York, p. 197 (1976).
- J. Francavilla and N.D. Chasteen, Inorg. Chem., 14, 2860 (1975).
- M.M. Iannuzzi and P.H. Rieger, Inorg. Chem., 14, 2895 (1975).
- G. Cabeza, B. Contreras, M.L. Araujo, F. Brito, L. Hernandez, A. Pérez, E. Del Carpio and V. Lubes, J. Mol. Liq., 207, 323 (2015).
- L.A. Guzmán D, J.D. Martínez, M.L. Araujo, F. Brito, E. del Carpio, L. Hernández and V. Lubes, J. Mol. Liq., 200, 259 (2014).
- W. Sanoja, J.D. Martínez, M.L. Araujo, F. Brito, L. Hernández, E. Del Carpio and V. Lubes, J. Mol. Liq., 197, 223 (2014).
- I. Fábián and I. Nagypál, Inorg. Chim. Acta, 62, 193 (1982).
- M.V. Chidambaram and P.K. Bhattacharya, J. Indian Chem. Soc., 47, 881 (1970).
- J.C. Pessoa, L.F.V. Boas, R.D. Gillard and R.J. Lancashire, Polyhedron, 7, 1245 (1988).
- P. Lagrange, M. Schneider and J. Lagrange, J. Chim. Phys., 95, 2280 (1998).
- G.A. Nazmutdinova, V.G. Styrlin, O.V. Kukushkina and A.V. Zakharov, Zhur. Neorg. Khim., 39, 1510 (1994).
- J.C. Pessoa, L.F.V. Boas and R.D. Gillard, Polyhedron, 8, 1173 (1989).
- R.C. Tewari and M.N. Srivastava, Talanta, 20, 133 (1973).
- M.K. Singh and M.N. Srivastava, J. Inorg. Nucl. Chem., 34, 2081 (1972).
- L.D. Pettit and J.L.M. Swash, J. Chem. Soc., Dalton Trans., 588 (1976).
References
N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, edn 2, pp. 999 (2011).
N.D. Chasteen, Biochemistry of Vanadium, Springer: Berlin/Heidelberg/New York, p. 105 (1983).
K. Kustin, G.C. Mcleod, T.R. Gilbert and L.B.R. Brigs, Vanadium and Other Metal Ions in the Physiological Ecology of Marine Organisms, Springer: Berlin/Heidelberg/New York, p. 139 (1983).
M. Henze, Hoppe Seylers Z. Physiol. Chem., 72, 494 (1911).
G.C. McLeod, K.V. Ladd, K. Kustin and D.L. Toppen, Limnol. Oceanogr., 20, 491 (1975).
R.M.K. Carlson, Proc. Natl. Acad. Sci. USA, 72, 2217 (1975).
J. Hirata and H. Michibata, J. Exp. Zool., 257, 160 (1991).
H. Michibata, T. Uyama, T. Ueki and K. Kanamori, Microsc. Res. Tech., 56, 421 (2002).
H. Michibata and K. Kanamori, Vanadium in the Environment, Wiley-Interscience: New York, Part 1, p. 217 (1998).
S.G. Brand, N. Edelstein, C.J. Hawkins, G. Shalimoff, M.R. Snow and E.R.T. Tiekink, Inorg. Chem., 29, 434 (1990).
H. Michibata, Y. Iwata and J. Hirata, J. Exp. Zool., 257, 306 (1991).
T.D. Tullius, W.O. Gillum, R.M.K. Carlson and K.O. Hodgson, J. Am. Chem. Soc., 102, 5670 (1980).
A.L. Dingley, K. Kustin, I.G. Macara and G.C. McLeod, Biochim. Biophys. Acta, 649, 493 (1981).
P. Frank, R.M.K. Carlson and K.O. Hodgson, Inorg. Chem., 25, 470 (1986).
S. Lee, K. Kustin, W.E. Robinson, R.B. Frankel and K. Spartalian, J. Inorg. Biochem., 33, 183 (1988).
M. Henze, Hoppe Seylers Z. Physiol. Chem., 79, 215 (1912).
M. Henze, Hoppe Seylers Z. Physiol. Chem., 88, 345 (1913).
M. Henze, Hoppe Seylers Z. Physiol. Chem., 213, 125 (1932).
H. Michibata, T. Uyama, T. Ueki and K. Kanamori, in eds.: H. Sawada, H. Yokosawa and C.C. Lambert, The Biology of Ascidian, Springer Verlag, p. 363 (2001).
H. Michibata, N. Yamaguchi, U. Uyama and T. Ueki, Coord. Chem. Rev., 237, 41 (2003).
P.C. Wilkins, M.D. Johnson, A.A. Holder and D.C. Crans, Inorg. Chem., 45, 1471 (2006).
X. Shi, D.C. Flynn, K. Liu and N. Dalal, Ann. Clin. Lab. Sci., 27, 422 (1997).
K. Kanamori, M. Sakurai, T. Kinoshita, T. Uyama, T. Ueki and H. Michibata, J. Inorg. Biochem., 77, 157 (1999).
K. Kanamori, Y. Kinebuchi and H. Michibata, Chem. Lett., 26, 423 (1997).
M.K. Islam, C. Tsuboya, H. Kusaka, S. Aizawa, T. Ueki, H. Michibata and K. Kanamori, Biochim. Biophys. Acta, 1770, 1212 (2007).
M.K. Islam, M.M. Hossain and K. Kanamori, Int. J. Inorg. Bioinorg. Chem., 3, 1 (2013).
T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori and H. Michibata, Biochim. Biophys. Acta, 1626, 43 (2003).
N. Yamaguchi, K. Kamino, T. Ueki and H. Michibata, Mar. Biotechnol., 6, 165 (2004).
M. Yoshihara, T. Ueki, T. Watanabe, N. Yamaguchi, K. Kamino and H. Michibata, Biochim. Biophys. Acta, 1730, 206 (2005).
K. Fukui, T. Ueki, H. Ohya and H. Michibata, J. Am. Chem. Soc., 125, 6352 (2003).
T. Kanda, Y. Nose, J. Wuchiyama, T. Uyama, Y. Moriyama and H. Michibata, Zoolog. Sci., 14, 37 (1997).
T. Hamada, M. Asanuma, T. Ueki, F. Hayashi, N. Kobayashi, S. Yokoyama, H. Michibata and H. Hirota, J. Am. Chem. Soc., 127, 4216 (2005).
W.A. Prinz, F. Aslund, A. Holmgren and J. Beckwith, J. Biol. Chem., 272, 15661 (1997).
H. Choi, S. Kim, P. Mukhopadhyay, S. Cho, J. Woo, G. Storz and S.E. Ryu, Cell, 105, 103 (2001).
U. Jakob, W. Muse, M. Eser and J.C.A. Bardwell, Cell, 96, 341 (1999).
D. Shriver and P. Atkins, Inorganic Chemistry, Freeman: New York, edn 3, p. 702 (1999).
D.H. Anderson and J.H. Swinehart, Comp. Biochem. Physiol., 99A, 585 (1991).
M. Rangel, A. Tamura, C. Fukushima and H. Sakurai, J. Biol. Inorg. Chem., 6, 128 (2001).
P.R. Klich, A.T. Daniher, P.R. Challen, D.B. McConville and W.J. Youngs, Inorg. Chem., 35, 347 (1996).
A. Katoh, K. Taguchi, H. Okada, M. Harata, Y. Fujisawa, T. Takino and H. Sakurai, Chem. Lett., 29, 866 (2000).
N.D. Chasteen, in eds.: L. Berliner and J. Reuben, Biological Magnetic Resonance, Plenum Press, New York, vol. 3, p. 53 (1981).
T.S. Smith II, R. LoBrutto and V.L. Pecoraro, Coord. Chem. Rev., 228, 1 (2002).
C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations, Wiley-Interscience, New York, p. 197 (1976).
J. Francavilla and N.D. Chasteen, Inorg. Chem., 14, 2860 (1975).
M.M. Iannuzzi and P.H. Rieger, Inorg. Chem., 14, 2895 (1975).
G. Cabeza, B. Contreras, M.L. Araujo, F. Brito, L. Hernandez, A. Pérez, E. Del Carpio and V. Lubes, J. Mol. Liq., 207, 323 (2015).
L.A. Guzmán D, J.D. Martínez, M.L. Araujo, F. Brito, E. del Carpio, L. Hernández and V. Lubes, J. Mol. Liq., 200, 259 (2014).
W. Sanoja, J.D. Martínez, M.L. Araujo, F. Brito, L. Hernández, E. Del Carpio and V. Lubes, J. Mol. Liq., 197, 223 (2014).
I. Fábián and I. Nagypál, Inorg. Chim. Acta, 62, 193 (1982).
M.V. Chidambaram and P.K. Bhattacharya, J. Indian Chem. Soc., 47, 881 (1970).
J.C. Pessoa, L.F.V. Boas, R.D. Gillard and R.J. Lancashire, Polyhedron, 7, 1245 (1988).
P. Lagrange, M. Schneider and J. Lagrange, J. Chim. Phys., 95, 2280 (1998).
G.A. Nazmutdinova, V.G. Styrlin, O.V. Kukushkina and A.V. Zakharov, Zhur. Neorg. Khim., 39, 1510 (1994).
J.C. Pessoa, L.F.V. Boas and R.D. Gillard, Polyhedron, 8, 1173 (1989).
R.C. Tewari and M.N. Srivastava, Talanta, 20, 133 (1973).
M.K. Singh and M.N. Srivastava, J. Inorg. Nucl. Chem., 34, 2081 (1972).
L.D. Pettit and J.L.M. Swash, J. Chem. Soc., Dalton Trans., 588 (1976).