Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antibacterial Studies of Heterobinuclear Cadmium-Tungsten Complexes of Dithiocarbamates
Corresponding Author(s) : R. Sundaram
Asian Journal of Chemistry,
Vol. 29 No. 2 (2017): Vol 29 Issue 2
Abstract
The heterobinuclear complexes [CdWO2(L)3(H2O)2] (L = dithiocarbamates) were prepared by the interaction of cadmium tungstate with the respective ligands in aqueous DMF. The magnetic moment (1.7 BM) and EPR studies suggested the presence of tungsten in the pentavalent state. The FT-IR spectral bands suggested the presence of n(W=O) (900 cm-1) and n(Cd-O-W) (790 cm-1) and bidentate dithiocarbamate ligands (1500 and 960 cm-1) in the molecule. The FT-IR and thermal decomposition studies confirmed the presence of a coordinated water molecule. The 1H NMR chemical shifts indicated non-identical environment of protons coming closer due to rigidity in rotation around C–N bond of dithiocarbamate ligand and coordination to the heterometal atoms. The mass spectral data showed 16 lines at m/z 808-824 and subsequent peaks correspond to the fragmentation of water and dithiocarbamate ligands in steps from the complex. The proposed structure consists of a tetrahedral cadmium(II) and octahedral tungsten(V) bridged by an oxo group. The antimicrobial activity of the complexes were determined by disc diffusion and well diffusion method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Dori, Prog. Inorg. Chem., 28, 239 (1981).
- I. Yamamoto, T. Saiki, S.M. Liu and L.G. Ljungdahl, J. Biol. Chem., 258, 1826 (1983).
- K.M. Sung and R.H. Holm, Inorg. Chem., 39, 1275 (2000).
- D.C. Rees, Y. Hu, C. Kisker and H. Schindelin, J. Chem. Soc., Dalton Trans., 3909 (1997).
- M.K. Johnson, M.K. Rees and M.W.W. Adams, Chem. Rev., 96, 2817 (1996).
- M.M. Chirila, K.T. Stevens, H.J. Murphy and N.C. Giles, J. Phys. Chem. Solids, 61, 675 (2000).
- J.R. Morrow, T.L. Tonker, J.L. Templeton and W.R. Kenan, J. Am. Chem. Soc., 107, 6956 (1985).
- K. Nakamoto, J. Fujita, R.A. Condrate and Y. Morimoto, J. Chem. Phys., 39, 423 (1963).
- M.R. Udupa and K.S. Nagaraja, Thermochim. Acta, 58, 117 (1982).
- M.R. Udupa and K.S. Nagaraja, Thermochim. Acta, 56, 241 (1982).
References
Z. Dori, Prog. Inorg. Chem., 28, 239 (1981).
I. Yamamoto, T. Saiki, S.M. Liu and L.G. Ljungdahl, J. Biol. Chem., 258, 1826 (1983).
K.M. Sung and R.H. Holm, Inorg. Chem., 39, 1275 (2000).
D.C. Rees, Y. Hu, C. Kisker and H. Schindelin, J. Chem. Soc., Dalton Trans., 3909 (1997).
M.K. Johnson, M.K. Rees and M.W.W. Adams, Chem. Rev., 96, 2817 (1996).
M.M. Chirila, K.T. Stevens, H.J. Murphy and N.C. Giles, J. Phys. Chem. Solids, 61, 675 (2000).
J.R. Morrow, T.L. Tonker, J.L. Templeton and W.R. Kenan, J. Am. Chem. Soc., 107, 6956 (1985).
K. Nakamoto, J. Fujita, R.A. Condrate and Y. Morimoto, J. Chem. Phys., 39, 423 (1963).
M.R. Udupa and K.S. Nagaraja, Thermochim. Acta, 58, 117 (1982).
M.R. Udupa and K.S. Nagaraja, Thermochim. Acta, 56, 241 (1982).