Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation, Characterization and Antibacterial Activity of NiO Nanoparticles
Corresponding Author(s) : Helen P. Kavitha
Asian Journal of Chemistry,
Vol. 29 No. 2 (2017): Vol 29 Issue 2
Abstract
In present investigation, the synthesis of nickel oxide (NiO) nanoparticles is performed using thermal decomposition method. The As-prepared NiO nanoparticles was characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersion X-ray spectroscopy. Antibacterial activity of NiO nanoparticles was tested against Bacillus subtills, Streptococcus pneumonia, Escherichia coli and Proteus vulgaris. The results show that the synthesized NiO nanoparticles will be great potential in the field of nanomedicine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan and K. Adibkia, Mater. Sci. Eng., 44, 278 (2014).
- M. Guziewicz, W. Jung, J. Grochowski, M. Borysiewicz, K. Golaszewska, R. Kruszka, B.S. Witkowski, J. Domagala, M. Gryzinski, K. Tyminska, P. Tulik and A. Piotrowska, Process. Eng., 25, 367 (2011).
- A. Azens, L. Kullman, G. Vaivars, H. Nordborg and C.G. Granqvist, Solid State Ion., 113-115, 449 (1998).
- W. Shin and N. Murayama, Mater. Lett., 45, 302 (2000).
- A. Yan, Z. Chen, X. Song and X. Wang, Mater. Res. Bull., 31, 1171 (1996).
- S.L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki and N. Mizutani, J. Mater. Sci., 34, 1313 (1999).
- W. Wang, Y. Liu, C. Xu, C. Zheng and G. Wang, Chem. Phys. Lett., 362, 119 (2002).
- L. Xiang, X.Y. Deng and Y. Jin, Scr. Mater., 47, 219 (2002).
- L. Boyanova, G. Gergova, R. Nikolov, S. Derejian, E. Lazarova, N. Katsarov, I. Mitov and Z. Krastev, J. Med. Microbiol., 54, 481 (2005).
- A. Umar and Y.B. Hahn, Nanotechnology, 17, 2174 (2006).
- F. Davar, Z. Fereshteh and M. Salavati-Niasari, J. Alloys Comp., 476, 797 (2009).
- G. Singh, E.M. Joyce, J. Beddow and T.J. Mason, J. Microbiol. Biotechnol., 2, 106 (2012).
- J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Data, 29, 251 (1996).
- Y. Li, H. Lu, Q. Cheng, R. Li, S. He and B. Li, Sci. Hortic., 199, 81 (2016).
References
S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan and K. Adibkia, Mater. Sci. Eng., 44, 278 (2014).
M. Guziewicz, W. Jung, J. Grochowski, M. Borysiewicz, K. Golaszewska, R. Kruszka, B.S. Witkowski, J. Domagala, M. Gryzinski, K. Tyminska, P. Tulik and A. Piotrowska, Process. Eng., 25, 367 (2011).
A. Azens, L. Kullman, G. Vaivars, H. Nordborg and C.G. Granqvist, Solid State Ion., 113-115, 449 (1998).
W. Shin and N. Murayama, Mater. Lett., 45, 302 (2000).
A. Yan, Z. Chen, X. Song and X. Wang, Mater. Res. Bull., 31, 1171 (1996).
S.L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki and N. Mizutani, J. Mater. Sci., 34, 1313 (1999).
W. Wang, Y. Liu, C. Xu, C. Zheng and G. Wang, Chem. Phys. Lett., 362, 119 (2002).
L. Xiang, X.Y. Deng and Y. Jin, Scr. Mater., 47, 219 (2002).
L. Boyanova, G. Gergova, R. Nikolov, S. Derejian, E. Lazarova, N. Katsarov, I. Mitov and Z. Krastev, J. Med. Microbiol., 54, 481 (2005).
A. Umar and Y.B. Hahn, Nanotechnology, 17, 2174 (2006).
F. Davar, Z. Fereshteh and M. Salavati-Niasari, J. Alloys Comp., 476, 797 (2009).
G. Singh, E.M. Joyce, J. Beddow and T.J. Mason, J. Microbiol. Biotechnol., 2, 106 (2012).
J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Data, 29, 251 (1996).
Y. Li, H. Lu, Q. Cheng, R. Li, S. He and B. Li, Sci. Hortic., 199, 81 (2016).