Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Application of Synthesized Capped Silver Nanoparticles for Reduction of p-Nitroaniline
Asian Journal of Chemistry,
Vol. 29 No. 1 (2017): Vol 29 Issue 1
Abstract
Catalytic activity of synthesized capped silver nanoparticles was performed in the reduction of p-phenylene diamine from p-nitroaniline in the presence of reducing agent sodium borohydride. The rate of reduction is observed with nanoparticles having different sizes 40, 20 and 40 ± 2 nm. The product obtained in the presence of 20 nm size nanoparticles is in good yield and produced in less time when compared to other nanoparticles. Moreover it is observed that this catalyst showed maximum efficiency at 1 mM concentration and also act as potential recyclable catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Albrecht, C.W. Evans and C.L. Raston, Green Chem., 8, 417 (2006).
- J.D. Aiken III and R.G. Finke, J. Mol. Catal. Chem., 145, 1 (1999).
- M. Babincova and P. Babinec, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 153, 243 (2009).
- S.V. Vinogradov, Nanomedicine, 5, 165 (2010).
- M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 201, 3739 (2010).
- M.E. Pearce, J.B. Melanko and A.K. Salem, Pharm. Res., 24, 2335 (2007).
- Y. Xiao and X. Gao, Biomarkers Med., 4, 227 (2010).
- M.S. Muthu and B. Wilson, Nanomedicine, 5, 169 (2010).
- Y. Su, S. Qiao, H. Yang, C. Yang, Y. Jin, F. Stahr, J. Sheng, L. Cheng, C. Ling and G.Q. Lu, Nanotechnology, 21, 065604 (2010).
- M. Czerwinsk, Chemik, 68, 536 (2014).
- R. Sarada, V.J. Rao and B.S. Sunder, Int. J. Eng. Res. Appl., 5, 82 (2015).
- R. Sarada, V. Jagannadharao and B.S. Sundar, Asian J. Chem., 28, 658 (2016).
- R. Sarada, V.J. Rao, M. Padma and B.S. Sunder, The Experiment, 35, 2162 (2016).
- S. Kundu, S. Lau and H. Liang, J. Phys. Chem. C, 113, 5150 (2009).
- S. Kundu, K. Wang and H. Liang, J. Phys. Chem. C, 113, 5157 (2009).
- V. Reddy, R.S. Torati, S. Oh and C.G. Kim, Ind. Eng. Chem. Res., 52, 556 (2013).
References
M.A. Albrecht, C.W. Evans and C.L. Raston, Green Chem., 8, 417 (2006).
J.D. Aiken III and R.G. Finke, J. Mol. Catal. Chem., 145, 1 (1999).
M. Babincova and P. Babinec, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 153, 243 (2009).
S.V. Vinogradov, Nanomedicine, 5, 165 (2010).
M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 201, 3739 (2010).
M.E. Pearce, J.B. Melanko and A.K. Salem, Pharm. Res., 24, 2335 (2007).
Y. Xiao and X. Gao, Biomarkers Med., 4, 227 (2010).
M.S. Muthu and B. Wilson, Nanomedicine, 5, 169 (2010).
Y. Su, S. Qiao, H. Yang, C. Yang, Y. Jin, F. Stahr, J. Sheng, L. Cheng, C. Ling and G.Q. Lu, Nanotechnology, 21, 065604 (2010).
M. Czerwinsk, Chemik, 68, 536 (2014).
R. Sarada, V.J. Rao and B.S. Sunder, Int. J. Eng. Res. Appl., 5, 82 (2015).
R. Sarada, V. Jagannadharao and B.S. Sundar, Asian J. Chem., 28, 658 (2016).
R. Sarada, V.J. Rao, M. Padma and B.S. Sunder, The Experiment, 35, 2162 (2016).
S. Kundu, S. Lau and H. Liang, J. Phys. Chem. C, 113, 5150 (2009).
S. Kundu, K. Wang and H. Liang, J. Phys. Chem. C, 113, 5157 (2009).
V. Reddy, R.S. Torati, S. Oh and C.G. Kim, Ind. Eng. Chem. Res., 52, 556 (2013).