Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Intermolecular Interactions in Binary Mixtures of 2-Methylaniline with Isomeric Chlorotoluenes at Various Temperatures
Corresponding Author(s) : A. Venkatesulu
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
The densities (r), ultrasonic speeds (u) and viscosities (h) are reported for binary mixtures of 2-methylaniline with isomeric chlorotoluenes namely o-chlorotoluene, m-chlorotoluene and p-chlorotoluene over the entire range of mole fractions at temperatures 303.15, 308.15, 313.15 and 318.15 K and at atmospheric pressure. The excess properties such as excess molar volume, excess isentropic compressibility and deviation in viscosity are calculated from the density, speed of sound and viscosity and the Redlich-Kister equation, correlates these properties. The excess partial molar properties (`VEm,1,`VEm,2,`KEs,m,1 and`KEs,m,2) and excess partial molar properties at infinite dilution (`V°Em,1,`V°Em,2,`K°Es,m,1 and`K°Es,m,2) of components are calculated. The VE results are analyzed in the light Prigogine-Flory-Patterson theory. Analyses of each of the three contributions namely, interactional, free volume and P* to VE show that P* contribution is negative for all systems expect p-chlorotoluene, which has positive P* contribution and interactional contribution is positive for all systems. Further, the free volume effect is negative for all the mixtures. The variations of these parameters with composition and temperature are discussed in terms of intermolecular interactions prevailing in these mixtures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Syamala, D.R. Sekhar, K.S. Kumar and P. Venkateswarlu, Chinese J. Chem., 25, 32 (2007); https://doi.org/10.1002/cjoc.200790013.
- P.M. Reddy, K.S. kumar and P. Venkatesu, Fluid Phase Equilib., 310, 74 (2011); https://doi.org/10.1016/j.fluid.2011.07.018.
- V. Syamala, K.S. Kumar and P. Venkateswarlu, J. Chem. Thermodyn., 38, 1553 (2006); https://doi.org/10.1016/j.jct.2006.04.005.
- L. Venkatramana, K. Sivakumar, R.L. Gardas and K.D. Reddy, Thermochim. Acta, 581, 123 (2014); https://doi.org/10.1016/j.tca.2014.01.027.
- M. Gowrisankar, A. Venkatesulu, T.S. Krishna and K. Ravindhranath, J. Chem. Thermodyn., 107, 104 (2017); https://doi.org/10.1016/j.jct.2016.12.019.
- A.I. Vogel, Text Book of Practical Organic Chemistry, Longman Green, London (1989).
- P.V. Rao, M. Gowrisankar, L. Venkatramana, T.S. Krishna and K. Ravindhranath, J. Chem. Thermodyn., 101, 92 (2016); https://doi.org/10.1016/j.jct.2016.05.015.
- M. Zábranský and V. Ruzicka Jr., J. Phys. Chem. Ref. Data, 33, 1071 (2004); https://doi.org/10.1063/1.1797811.
- V. Pandiyan, S.L. Oswal, N.I. Malek and P. Vasantharani, Thermochim. Acta, 524, 140 (2011); https://doi.org/10.1016/j.tca.2011.07.005.
- N.A. Lange, Handbook of Chemistry, McGraw Hill Handbook Publishers Inc., Sandusky, Ohio, edn 9 (1956).
- S.C. Bhatia, R. Rani, J. Sangwan and R. Bhatia, Int. J. Thermophys., 32, 1163 (2011); https://doi.org/10.1007/s10765-011-0995-x.
- J. Jovanovic, A. Knezevic-Stevanovic and D. Grozdanic, J. Serb. Chem. Soc., 76, 417 (2011); https://doi.org/10.2298/JSC100511031J.
- R. Shaw, J. Chem. Eng. Data, 14, 461 (1969); https://doi.org/10.1021/je60043a036.
- D. Syamala, P. Venkateswarlu and K.S. Kumar, J. Chem. Eng. Data, 51, 928 (2006); https://doi.org/10.1021/je050413l.
- G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- B. Garcia, R. Alcalde, J.M. Leal and J.S. Matos, J. Chem. Soc., Faraday Trans., 92, 3347 (1996); https://doi.org/10.1039/FT9969203347.
- A. Awasthi and A. Awasthi, Thermochim. Acta, 537, 57 (2012); https://doi.org/10.1016/j.tca.2012.03.001.
- M.V. Rathnam, S. Mohite and M.S.S. Kumar, J. Solution Chem., 39, 1735 (2010); https://doi.org/10.1007/s10953-010-9610-1.
- M.R. Islam and S.K. Quadri, Thermochim. Acta, 115, 335 (1987); https://doi.org/10.1016/0040-6031(87)88379-X.
- G. Arul and L. Palaniappan and Indian J. Pure Appl. Phys., 43, 755 (2005).
- R.A. Clará, A.C. Gómez Marigliano and H.N. Sólimo, J. Chem. Eng. Data, 51, 1473 (2006); https://doi.org/10.1021/je060150a.
- H.T. Van and D. Patterson, J. Solution Chem., 11, 793 (1982); https://doi.org/10.1007/BF00650519.
- D. Patterson and G. Delma, Discuss Faraday Soc., 49, 98 (1970); https://doi.org/10.1039/DF9704900098.
- I. Prigogine, The Molecular Theory of Solution. North Holland Corp, Amsterdam (1957).
References
V. Syamala, D.R. Sekhar, K.S. Kumar and P. Venkateswarlu, Chinese J. Chem., 25, 32 (2007); https://doi.org/10.1002/cjoc.200790013.
P.M. Reddy, K.S. kumar and P. Venkatesu, Fluid Phase Equilib., 310, 74 (2011); https://doi.org/10.1016/j.fluid.2011.07.018.
V. Syamala, K.S. Kumar and P. Venkateswarlu, J. Chem. Thermodyn., 38, 1553 (2006); https://doi.org/10.1016/j.jct.2006.04.005.
L. Venkatramana, K. Sivakumar, R.L. Gardas and K.D. Reddy, Thermochim. Acta, 581, 123 (2014); https://doi.org/10.1016/j.tca.2014.01.027.
M. Gowrisankar, A. Venkatesulu, T.S. Krishna and K. Ravindhranath, J. Chem. Thermodyn., 107, 104 (2017); https://doi.org/10.1016/j.jct.2016.12.019.
A.I. Vogel, Text Book of Practical Organic Chemistry, Longman Green, London (1989).
P.V. Rao, M. Gowrisankar, L. Venkatramana, T.S. Krishna and K. Ravindhranath, J. Chem. Thermodyn., 101, 92 (2016); https://doi.org/10.1016/j.jct.2016.05.015.
M. Zábranský and V. Ruzicka Jr., J. Phys. Chem. Ref. Data, 33, 1071 (2004); https://doi.org/10.1063/1.1797811.
V. Pandiyan, S.L. Oswal, N.I. Malek and P. Vasantharani, Thermochim. Acta, 524, 140 (2011); https://doi.org/10.1016/j.tca.2011.07.005.
N.A. Lange, Handbook of Chemistry, McGraw Hill Handbook Publishers Inc., Sandusky, Ohio, edn 9 (1956).
S.C. Bhatia, R. Rani, J. Sangwan and R. Bhatia, Int. J. Thermophys., 32, 1163 (2011); https://doi.org/10.1007/s10765-011-0995-x.
J. Jovanovic, A. Knezevic-Stevanovic and D. Grozdanic, J. Serb. Chem. Soc., 76, 417 (2011); https://doi.org/10.2298/JSC100511031J.
R. Shaw, J. Chem. Eng. Data, 14, 461 (1969); https://doi.org/10.1021/je60043a036.
D. Syamala, P. Venkateswarlu and K.S. Kumar, J. Chem. Eng. Data, 51, 928 (2006); https://doi.org/10.1021/je050413l.
G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
B. Garcia, R. Alcalde, J.M. Leal and J.S. Matos, J. Chem. Soc., Faraday Trans., 92, 3347 (1996); https://doi.org/10.1039/FT9969203347.
A. Awasthi and A. Awasthi, Thermochim. Acta, 537, 57 (2012); https://doi.org/10.1016/j.tca.2012.03.001.
M.V. Rathnam, S. Mohite and M.S.S. Kumar, J. Solution Chem., 39, 1735 (2010); https://doi.org/10.1007/s10953-010-9610-1.
M.R. Islam and S.K. Quadri, Thermochim. Acta, 115, 335 (1987); https://doi.org/10.1016/0040-6031(87)88379-X.
G. Arul and L. Palaniappan and Indian J. Pure Appl. Phys., 43, 755 (2005).
R.A. Clará, A.C. Gómez Marigliano and H.N. Sólimo, J. Chem. Eng. Data, 51, 1473 (2006); https://doi.org/10.1021/je060150a.
H.T. Van and D. Patterson, J. Solution Chem., 11, 793 (1982); https://doi.org/10.1007/BF00650519.
D. Patterson and G. Delma, Discuss Faraday Soc., 49, 98 (1970); https://doi.org/10.1039/DF9704900098.
I. Prigogine, The Molecular Theory of Solution. North Holland Corp, Amsterdam (1957).