Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Carbon Nanotubes by Modified Flame Fragments Deposition Method
Corresponding Author(s) : Falah H. Hussein
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
This study focuses on the synthesis of carbon nanotubes from Iraqi natural gas via a modified flame fragments deposition method in presence and absence of the catalyst. Four types of catalysts were used for the growth of carbon nanotubes. These types are iron doped on magnesium oxide (Fe/MgO), iron-cobalt doped on calcium carbonate (Fe-Co/CaCO3) and iron(III) oxide. All these four types were prepared in one batch by a home made instrument.The implemented technique ensures the same experimental conditions such as type of carbon source, type of carrier gas, flow rate of gases, growth temperature and synthesis time of growth for all synthesized samples. Various experimental techniques viz., X-ray diffraction, Raman spectroscopy, scanning electron microscopy and thermogravimetric analysis were used for characterization of the synthesized carbon nanotubes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar and J.N. Sahu, J. Ind. Eng. Chem., 20, 1186 (2014); https://doi.org/10.1016/j.jiec.2013.09.001.
- C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-García, S. GarcíaMartín and R.M. Peña-Crecente, Anal. Chim. Acta, 853, 77 (2015); https://doi.org/10.1016/j.aca.2014.10.008.
- T.K. Gupta, B.P. Singh, R.B. Mathur and S.R. Dhakate, Nanoscale, 6, 842 (2014); https://doi.org/10.1039/C3NR04565J.
- D.M. Sun, C. Liu, W.C. Ren and H.M. Cheng, Small, 9, 1188 (2013); https://doi.org/10.1002/smll.201203154.
- C.D. Modi, S.J. Patel, A.B. Desai and R.S.R. Murthy, J. Appl. Pharm. Sci., 1, 103 (2011).
- K.Y. Lee, W.M. Yeoh, S.P. Chai and A.R. Mohamed, J. Nat. Gas Chem., 21, 620 (2012); https://doi.org/10.1016/S1003-9953(11)60410-6.
- A.E. Awadallah, F.K. Gad, A.A. Aboul-Enein, M.R. Labib and A.K. Aboul-Gheit, Egyptian J. Petroleum, 22, 27 (2013); https://doi.org/10.1016/j.ejpe.2012.11.012.
- K.Y. Tran, B. Heinrichs, J.F. Colomer, J.P. Pirard and S. Lambert, Appl. Catal. A, 318, 63 (2007); https://doi.org/10.1016/j.apcata.2006.10.042.
- C.M. Chen, Y.M. Dai, J.G. Huang and J.M. Jehng, Carbon, 44, 1808 (2006); https://doi.org/10.1016/j.carbon.2005.12.043.
- J. Cheng, X. Zhang, Z. Luo, F. Liu, Y. Ye, W. Yin, W. Liu and Y. Han, Mater. Chem. Phys., 95, 5 (2006); https://doi.org/10.1016/j.matchemphys.2005.04.043.
- A.E. Awadallah, S.M. Abdel-Hamid, D.S. El-Desouki, A.A. AboulEnein and A.K. Aboul-Gheit, Egyptian J. Petroleum, 21, 101 (2012); https://doi.org/10.1016/j.ejpe.2012.11.005.
- G.J. Muhammed and F.H. Hussein, Chem. Sci. J., 6, e110 (2015); https://doi.org/10.4172/2150-3494.1000e106.
- G.J. Muhammed, F.H. Abdulrazzak and F.H. Hussein, Chem. Sci. J., 5, e106 (2015); https://doi.org/10.4172/2150-3494.1000e106.
- F.H. Hussein, F.H. Abdalrazak and A. Alkaim, Patent Iraq COSQC 4975 (2017).
- M.S. Dresselhaus,A. Jorio and R. Saito, Ann. Rev. Condens. Matter Phys., 1, 89 (2010); https://doi.org/10.1146/annurev-conmatphys-070909-103919.
- J. Dore, A. Burian and S. Tomita, Acta Phys. Polon. A, 98, 495 (2000); https://doi.org/10.12693/APhysPolA.98.495.
- F.H. Abdulrazzak, S.K. Esmail, H.A. Dawod, A.M. Abbas and M.K.K. Almaliki, Int. J. Theoret. Appl. Sci., 8, 37 (2016).
- A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono and J.B. Nagy, Materials, 3, 3092 (2010); https://doi.org/10.3390/ma3053092.
- A.H. Jayatissa and K. Guo, Vacuum, 83, 853 (2009); https://doi.org/10.1016/j.vacuum.2008.08.009.
- V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis,A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012.
- E.G. Ordoñez-Casanova, M. Román-Aguirre, A. Aguilar-Elguezabal and F. Espinosa-Magaña, Materials, 6, 2534 (2013); https://doi.org/10.3390/ma6062534.
- P. Jagdale, M. Sharon, G. Kalita, N.M.N. Maldar and M. Sharon, Adv. Mater. Phys. Chem., 2, 1 (2012); https://doi.org/10.4236/ampc.2012.21001.
- A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor and M. Rusop, Mater. Lett., 63, 2704 (2009); https://doi.org/10.1016/j.matlet.2009.09.048.
References
N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar and J.N. Sahu, J. Ind. Eng. Chem., 20, 1186 (2014); https://doi.org/10.1016/j.jiec.2013.09.001.
C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-García, S. GarcíaMartín and R.M. Peña-Crecente, Anal. Chim. Acta, 853, 77 (2015); https://doi.org/10.1016/j.aca.2014.10.008.
T.K. Gupta, B.P. Singh, R.B. Mathur and S.R. Dhakate, Nanoscale, 6, 842 (2014); https://doi.org/10.1039/C3NR04565J.
D.M. Sun, C. Liu, W.C. Ren and H.M. Cheng, Small, 9, 1188 (2013); https://doi.org/10.1002/smll.201203154.
C.D. Modi, S.J. Patel, A.B. Desai and R.S.R. Murthy, J. Appl. Pharm. Sci., 1, 103 (2011).
K.Y. Lee, W.M. Yeoh, S.P. Chai and A.R. Mohamed, J. Nat. Gas Chem., 21, 620 (2012); https://doi.org/10.1016/S1003-9953(11)60410-6.
A.E. Awadallah, F.K. Gad, A.A. Aboul-Enein, M.R. Labib and A.K. Aboul-Gheit, Egyptian J. Petroleum, 22, 27 (2013); https://doi.org/10.1016/j.ejpe.2012.11.012.
K.Y. Tran, B. Heinrichs, J.F. Colomer, J.P. Pirard and S. Lambert, Appl. Catal. A, 318, 63 (2007); https://doi.org/10.1016/j.apcata.2006.10.042.
C.M. Chen, Y.M. Dai, J.G. Huang and J.M. Jehng, Carbon, 44, 1808 (2006); https://doi.org/10.1016/j.carbon.2005.12.043.
J. Cheng, X. Zhang, Z. Luo, F. Liu, Y. Ye, W. Yin, W. Liu and Y. Han, Mater. Chem. Phys., 95, 5 (2006); https://doi.org/10.1016/j.matchemphys.2005.04.043.
A.E. Awadallah, S.M. Abdel-Hamid, D.S. El-Desouki, A.A. AboulEnein and A.K. Aboul-Gheit, Egyptian J. Petroleum, 21, 101 (2012); https://doi.org/10.1016/j.ejpe.2012.11.005.
G.J. Muhammed and F.H. Hussein, Chem. Sci. J., 6, e110 (2015); https://doi.org/10.4172/2150-3494.1000e106.
G.J. Muhammed, F.H. Abdulrazzak and F.H. Hussein, Chem. Sci. J., 5, e106 (2015); https://doi.org/10.4172/2150-3494.1000e106.
F.H. Hussein, F.H. Abdalrazak and A. Alkaim, Patent Iraq COSQC 4975 (2017).
M.S. Dresselhaus,A. Jorio and R. Saito, Ann. Rev. Condens. Matter Phys., 1, 89 (2010); https://doi.org/10.1146/annurev-conmatphys-070909-103919.
J. Dore, A. Burian and S. Tomita, Acta Phys. Polon. A, 98, 495 (2000); https://doi.org/10.12693/APhysPolA.98.495.
F.H. Abdulrazzak, S.K. Esmail, H.A. Dawod, A.M. Abbas and M.K.K. Almaliki, Int. J. Theoret. Appl. Sci., 8, 37 (2016).
A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono and J.B. Nagy, Materials, 3, 3092 (2010); https://doi.org/10.3390/ma3053092.
A.H. Jayatissa and K. Guo, Vacuum, 83, 853 (2009); https://doi.org/10.1016/j.vacuum.2008.08.009.
V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis,A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012.
E.G. Ordoñez-Casanova, M. Román-Aguirre, A. Aguilar-Elguezabal and F. Espinosa-Magaña, Materials, 6, 2534 (2013); https://doi.org/10.3390/ma6062534.
P. Jagdale, M. Sharon, G. Kalita, N.M.N. Maldar and M. Sharon, Adv. Mater. Phys. Chem., 2, 1 (2012); https://doi.org/10.4236/ampc.2012.21001.
A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor and M. Rusop, Mater. Lett., 63, 2704 (2009); https://doi.org/10.1016/j.matlet.2009.09.048.