Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reductometric Titration and Quantum Chemical Study of Oxalohydroxamic Acid for Determination of Manganese in Ores and Alloys
Corresponding Author(s) : Dakeshwar Kumar Verma
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
Oxalohydroxamic acid has been employed as a reductometric titrant for the determination of manganese in 2 N sulphuric acid. Stoichiometry of the reaction is established. One mole of oxalohydroxamic acid was found to consume 12 equivalents of KMnO4. The titre values are obtained by second derivative plots of potentiometric titrations. The effect of diverse ions, temperature, time, sulphuric acid concentration and concentration of reacting substances on the stoichiometry of the reaction were studied. The results obtained are reproducible. This study also presents molecular orbital/density functional theory (MO/DFT) for calculations of the electronic structure and reducing property of oxalohydroxamic acid for metal determination. A good agreement is found between the predicted properties of oxalohydroxamic acid and experimental and theoretical results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Brik, C.-Y. Wu and C.-H. Wong, Org. Biomol. Chem., 4, 1446 (2006); https://doi.org/10.1039/b600055j.
- D.Y. Chung and E.H. Lee, Bull. Korean Chem. Soc., 26, 1692 (2005); https://doi.org/10.5012/bkcs.2005.26.11.1692.
- E. Farkas, E.A. Enyedy, G. Micera and E. Garribba, Polyhedron, 19, 1727 (2000); https://doi.org/10.1016/S0277-5387(00)00453-8.
- I.P. Alimarin, F.P. Sudakov and B.G. Golovkin, Russ. Chem. Rev., 31, 466 (1962); https://doi.org/10.1070/RC1962v031n08ABEH001306.
- F.P.L. Andrieux, C. Boxall and R.J. Taylor, J. Solution Chem., 36, 1201 (2007); https://doi.org/10.1007/s10953-007-9183-9.
- R. Brammer, J. Buckels and S. Bramhall, Int. J. Clin. Pract., 54, 373 (2000).
- D.A. Brown, L.P. Cuffe, N.J. Fitzpatrick and Á.T. Ryan, Inorg. Chem., 43, 297 (2004); https://doi.org/10.1021/ic034432x.
- J.E. Birkett, M.J. Carrott, O.D. Fox, C.J. Jones, C.J. Maher, C.V. Roube, R.J. Taylor and D.A. Woodhead, Nucl. Sci. Technol., 44, 337 (2007); https://doi.org/10.1080/18811248.2007.9711291.
- R. Chiarizia, P.R. Danesi and S. Fornarini, J. Inorg. Nucl. Chem., 41, 1465 (1979); https://doi.org/10.1016/0022-1902(79)80213-4.
- A.K. Majumdar, N-Benzoylphenylhydroxylamine and Its Analogues, Pergamon Press, Oxford, edn 1, pp. 107(1972).
- R. Codd, Coord. Chem. Rev., 252, 1387 (2008); https://doi.org/10.1016/j.ccr.2007.08.001.
- H. Mishra,A.L. Parrill and J.S. Williamson,Antimicrob. Agents Chemother., 46, 2613 (2002); https://doi.org/10.1128/AAC.46.8.2613-2618.2002.
- N. Braich and R. Codd, Analyst, 133, 877 (2008); https://doi.org/10.1039/b802355g.
- J. Liu, D. Obando, L.G. Schipanski, L.K. Groebler, P.K. Witting, D.S. Kalinowski, D.R. Richardson and R. Codd, J. Med. Chem., 53, 1370 (2010); https://doi.org/10.1021/jm9016703.
- M.K. Ahmed and C.S. Rao, Talanta, 25, 708 (1978); https://doi.org/10.1016/0039-9140(78)80181-7.
- R.J. Taylor, I. May, A.L. Wallwork, I.S. Denniss, N.J. Hill, B.Y. Galkin, B.Y. Zilberman and Y.S. Fedorov, J. Alloys Comp., 271-273, 534 (1998); https://doi.org/10.1016/S0925-8388(98)00146-7.
- G.B. Gerber, A. L’eonard and P. Hantson, Crit. Rev. Oncol. Hematol., 42, 25 (2002); https://doi.org/10.1016/S1040-8428(01)00178-0.
- R. Baetty, The Rlements: Manganese, Marshal Cavendish Corporation: New York, pp. 32(2004).
- WHO, Air Quality Guidelines for Europe, World Health Organisation, Regional Office for Europe: Copenhagen, edn 2, pp. 288 (2001).
- G. Gece, Corros. Sci., 50, 2981 (2008); https://doi.org/10.1016/j.corsci.2008.08.043.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich,A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
- Vogel’s Textbook of Quantitative Inorganic Analysis, ELBS New York, Section X, edn 4, p. 351 (1978).
- W.B. Renfrow Jr. and C.R. Hauser, J. Am. Chem. Soc., 59, 2308 (1937); https://doi.org/10.1021/ja01290a064.
- S. Agrawal, F. Khan and S. Ganesh, Chem. Mater. Res., 2, 58 (2012).
- E.W. Balis, L.B. Bronk, H.A. Liebhafsky and H.G. Pfeiffer, Anal. Chem., 27, 1173 (1955); https://doi.org/10.1021/ac60103a041.
- F. Khatoon, Ph.D Thesis, Pt. Ravishankar Shukla University, Raipur India (1984).
- P.W. West, J. Chem. Educ., 18, 528 (1941); https://doi.org/10.1021/ed018p528.
- G.G. Rao and P.K. Rao, Talanta, 10, 1251 (1963); https://doi.org/10.1016/0039-9140(63)80185-X.
- C.B. Verma, M.A. Quraishi and A. Singh, J. Taiwan Inst. Chem. Eng., 49, 229 (2015); https://doi.org/10.1016/j.jtice.2014.11.029.
- H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A.
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
- E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner and I. Love, Int. J. Quantum Chem., 110, 1003 (2010); https://doi.org/10.1002/qua.22249.
- G. Gece and S. Bilgic, Corros. Sci., 52, 3435 (2010); https://doi.org/10.1016/j.corsci.2010.06.015.
- S. Xia, M. Qiu, L. Yu, F. Liu and H. Zhao, Corros. Sci., 50, 2021 (2008); https://doi.org/10.1016/j.corsci.2008.04.021.
- H. Wang, X. Wang, H. Wang, L. Wang and A. Liu, J. Mol. Model., 13, 147 (2006); https://doi.org/10.1007/s00894-006-0135-x.
References
A. Brik, C.-Y. Wu and C.-H. Wong, Org. Biomol. Chem., 4, 1446 (2006); https://doi.org/10.1039/b600055j.
D.Y. Chung and E.H. Lee, Bull. Korean Chem. Soc., 26, 1692 (2005); https://doi.org/10.5012/bkcs.2005.26.11.1692.
E. Farkas, E.A. Enyedy, G. Micera and E. Garribba, Polyhedron, 19, 1727 (2000); https://doi.org/10.1016/S0277-5387(00)00453-8.
I.P. Alimarin, F.P. Sudakov and B.G. Golovkin, Russ. Chem. Rev., 31, 466 (1962); https://doi.org/10.1070/RC1962v031n08ABEH001306.
F.P.L. Andrieux, C. Boxall and R.J. Taylor, J. Solution Chem., 36, 1201 (2007); https://doi.org/10.1007/s10953-007-9183-9.
R. Brammer, J. Buckels and S. Bramhall, Int. J. Clin. Pract., 54, 373 (2000).
D.A. Brown, L.P. Cuffe, N.J. Fitzpatrick and Á.T. Ryan, Inorg. Chem., 43, 297 (2004); https://doi.org/10.1021/ic034432x.
J.E. Birkett, M.J. Carrott, O.D. Fox, C.J. Jones, C.J. Maher, C.V. Roube, R.J. Taylor and D.A. Woodhead, Nucl. Sci. Technol., 44, 337 (2007); https://doi.org/10.1080/18811248.2007.9711291.
R. Chiarizia, P.R. Danesi and S. Fornarini, J. Inorg. Nucl. Chem., 41, 1465 (1979); https://doi.org/10.1016/0022-1902(79)80213-4.
A.K. Majumdar, N-Benzoylphenylhydroxylamine and Its Analogues, Pergamon Press, Oxford, edn 1, pp. 107(1972).
R. Codd, Coord. Chem. Rev., 252, 1387 (2008); https://doi.org/10.1016/j.ccr.2007.08.001.
H. Mishra,A.L. Parrill and J.S. Williamson,Antimicrob. Agents Chemother., 46, 2613 (2002); https://doi.org/10.1128/AAC.46.8.2613-2618.2002.
N. Braich and R. Codd, Analyst, 133, 877 (2008); https://doi.org/10.1039/b802355g.
J. Liu, D. Obando, L.G. Schipanski, L.K. Groebler, P.K. Witting, D.S. Kalinowski, D.R. Richardson and R. Codd, J. Med. Chem., 53, 1370 (2010); https://doi.org/10.1021/jm9016703.
M.K. Ahmed and C.S. Rao, Talanta, 25, 708 (1978); https://doi.org/10.1016/0039-9140(78)80181-7.
R.J. Taylor, I. May, A.L. Wallwork, I.S. Denniss, N.J. Hill, B.Y. Galkin, B.Y. Zilberman and Y.S. Fedorov, J. Alloys Comp., 271-273, 534 (1998); https://doi.org/10.1016/S0925-8388(98)00146-7.
G.B. Gerber, A. L’eonard and P. Hantson, Crit. Rev. Oncol. Hematol., 42, 25 (2002); https://doi.org/10.1016/S1040-8428(01)00178-0.
R. Baetty, The Rlements: Manganese, Marshal Cavendish Corporation: New York, pp. 32(2004).
WHO, Air Quality Guidelines for Europe, World Health Organisation, Regional Office for Europe: Copenhagen, edn 2, pp. 288 (2001).
G. Gece, Corros. Sci., 50, 2981 (2008); https://doi.org/10.1016/j.corsci.2008.08.043.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich,A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
Vogel’s Textbook of Quantitative Inorganic Analysis, ELBS New York, Section X, edn 4, p. 351 (1978).
W.B. Renfrow Jr. and C.R. Hauser, J. Am. Chem. Soc., 59, 2308 (1937); https://doi.org/10.1021/ja01290a064.
S. Agrawal, F. Khan and S. Ganesh, Chem. Mater. Res., 2, 58 (2012).
E.W. Balis, L.B. Bronk, H.A. Liebhafsky and H.G. Pfeiffer, Anal. Chem., 27, 1173 (1955); https://doi.org/10.1021/ac60103a041.
F. Khatoon, Ph.D Thesis, Pt. Ravishankar Shukla University, Raipur India (1984).
P.W. West, J. Chem. Educ., 18, 528 (1941); https://doi.org/10.1021/ed018p528.
G.G. Rao and P.K. Rao, Talanta, 10, 1251 (1963); https://doi.org/10.1016/0039-9140(63)80185-X.
C.B. Verma, M.A. Quraishi and A. Singh, J. Taiwan Inst. Chem. Eng., 49, 229 (2015); https://doi.org/10.1016/j.jtice.2014.11.029.
H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A.
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner and I. Love, Int. J. Quantum Chem., 110, 1003 (2010); https://doi.org/10.1002/qua.22249.
G. Gece and S. Bilgic, Corros. Sci., 52, 3435 (2010); https://doi.org/10.1016/j.corsci.2010.06.015.
S. Xia, M. Qiu, L. Yu, F. Liu and H. Zhao, Corros. Sci., 50, 2021 (2008); https://doi.org/10.1016/j.corsci.2008.04.021.
H. Wang, X. Wang, H. Wang, L. Wang and A. Liu, J. Mol. Model., 13, 147 (2006); https://doi.org/10.1007/s00894-006-0135-x.