Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cloud Point Extraction and Determination of Trace Iron(III) in Urine Samples by Spectrophotometry and Flame Atomic Absorption Spectrometry
Corresponding Author(s) : Ahmed Fadhil Khudhair
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
Cloud point technique used effectively for extraction and pre-concentration of iron(III) in the urine samples of occupational workers prior measured by using flame atomic absorption spectrometry and UV-visible spectrophotometer. The metal responds with benzidine as reagent in a non-ionic surfactant Triton X-114 medium. The main factors affecting cloud point extraction efficiencies, such as pH of sample solution, concentration of benzidine reagent, type of surfactant, concentration of Triton X-114, effect of salt out, influence of interferences and impact of equilibration temperature and time were studied. The calibration curve was linear in the range of 0.25-3.0 μg mL-1 with r2 = 0.9655 for UV-visible spectrophotometer at lmax 425 nm. The limit of detection was 0.25 μg mL-1. The relative standard deviation for six replicates was 3.071 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.A. Zolotov and N.M. Kuz’min, Preconcentration of Trace Elements, Elsevier Science Publishers B.V., Amsterdam (1990).
- C.C. Nascentes and M.A.Z. Arruda, Talanta, 61, 759 (2003); https://doi.org/10.1016/S0039-9140(03)00367-9.
- S. Ferreira, J. Deandrade, M. Korn, M. Pereira, V. Lemos, W. Santos, F. Rodrigues, A. Souza, H. Ferreira and E. Dasilva, J. Hazard. Mater., 145, 358 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.077.
- Z. Alfassi and C.M. Wai, Preconcentration Techniques For Trace Elements, CRC Press, pp. 480 (1991).
- D.E. Leyden and W. Wegscheider, Anal. Chem., 53, 1059A (1981); https://doi.org/10.1021/ac00232a731.
- L.A. Escaleira, R.E. Santelli, E.P. Oliveira, M.F.B. Carvalho and M.A. Bezerra, Int. J. Environ. Anal. Chem., 89, 515 (2009); https://doi.org/10.1080/03067310802592763.
- F. Quina and W.L. Hinze, Ind. Eng. Chem. Res., 38, 4150 (1999); https://doi.org/10.1021/ie980389n.
- E. Pramauro and A. Prevot, Pure Appl. Chem, 67, 551 (1995); https://doi.org/10.1351/pac199567040551.
- F. Shemirani, S.D. Abkenar, A.A. Mirroshandel, M.S. Niasari and R.R. Kozania, Anal. Sci., 19, 1453 (2003); https://doi.org/10.2116/analsci.19.1453.
- A.F. Khudhair, S.I. Saeed, S.K. Abbas and H.M. Mohsin, Asian J. Chem., 29, 1065 (2017); https://doi.org/10.14233/ajchem.2017.20410.
- M. Valko, H. Morris and M.T.D. Cronin, Curr. Med. Chem., 12, 1161 (2005); https://doi.org/10.2174/0929867053764635.
- C.A. Sahin, I. Tokgöz and S. Bektas, J. Hazard. Mater., 181, 359 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.018.
- P.T. Lieu, M. Heiskala, P.A. Peterson and Y. Yang, Mol. Aspects Med., 22, 1 (2001); https://doi.org/10.1016/S0098-2997(00)00006-6.
- R.L. Nelson, Free Radic. Biol. Med., 12, 161 (1992); https://doi.org/10.1016/0891-5849(92)90010-E.
- F. Shakerian, S. Dadfarnia and A.M.H. Shabani, J. Iran. Chem. Soc., 6, 594 (2009); https://doi.org/10.1007/BF03246539.
- M. Ghaedi, A. Shokrollahi, R. Mehrnoosh, O. Hossaini and M. Soylak, Cent. Eur. J. Chem., 6, 488 (2008); https://doi.org/10.2478/s11532-008-0049-9.
- Z.A.A. Khammas and R.A. Rashid, Int. J. Chem. Sci., 14, 955 (2016).
- H. Filik and D. Giray, Food Chem., 130, 209 (2012); https://doi.org/10.1016/j.foodchem.2011.07.008.
- A. Ohashi, H. Ito, C. Kanai, H. Imura and K. Ohashi, Talanta, 65, 525 (2005); https://doi.org/10.1016/j.talanta.2004.07.018.
- G. Peng, Q. He, G. Zhou, Y. Li, X. Su, M. Liu and L. Fan, Anal. Methods, 10, 1039 (2010).
- C. Ortega, S. Cerutti, R.A. Olsina, L.D. Martínez and M.F. Silva, J. Pharm. Biomed. Chem., 36, 721 (2004); https://doi.org/10.1016/j.jpba.2004.08.027.
- https://en.wikipedia.org/wiki/Urine
- C. Rosea, A. Parkera, B. Jeffersona and E. Cartmella, Sunny Health Science Center, 15, 18 (2015).
- A. Kanzler, Overview of Urine Diversion Components such as Waterless Urinals, Urine Diversion Toilets, Urine Storage and Reuse Systems, Technology Review, Urine Diversion Components, Deutsche Gesellschaft für Technische Zusammenarbeit GmbH (GTZ) Sustainable SanitationEcosan Program Postfach 5180, 65726 Eschborn, Germany (2009).
- I. Rodushkin and F. Odman, J. Trace Elem. Med. Biol., 14, 241 (2001); https://doi.org/10.1016/S0946-672X(01)80010-9.
- R. Brodzka, M. Trzcinka-Ochocka and B. Janasik, Int. J. Occup. Med. Environ. Health, 26, 302 (2013); https://doi.org/10.2478/s13382-013-0106-2.
- P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin and A. Bulatov, Anal. Chim. Acta, 911, 69 (2016); https://doi.org/10.1016/j.aca.2015.12.045.
- A. Afkhami, T. Madrakian and H. Siampour, J. Braz. Chem. Soc., 17, 797 (2006); https://doi.org/10.1590/S0103-50532006000400024.
- A.S. Amin, Spectrosc. Lett., 44, 424 (2011); https://doi.org/10.1080/00387010.2011.574308.
- D. Harvey, Chromatographic and Electrophoretic Methods, Analytical Chemistry, Chap. 12, pp. 543-621 (2000).
- M. Otto, Statistics and Computer Application in Analytical Chemistry, British Library Cataloguing, edn 3 (2016)
References
Y.A. Zolotov and N.M. Kuz’min, Preconcentration of Trace Elements, Elsevier Science Publishers B.V., Amsterdam (1990).
C.C. Nascentes and M.A.Z. Arruda, Talanta, 61, 759 (2003); https://doi.org/10.1016/S0039-9140(03)00367-9.
S. Ferreira, J. Deandrade, M. Korn, M. Pereira, V. Lemos, W. Santos, F. Rodrigues, A. Souza, H. Ferreira and E. Dasilva, J. Hazard. Mater., 145, 358 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.077.
Z. Alfassi and C.M. Wai, Preconcentration Techniques For Trace Elements, CRC Press, pp. 480 (1991).
D.E. Leyden and W. Wegscheider, Anal. Chem., 53, 1059A (1981); https://doi.org/10.1021/ac00232a731.
L.A. Escaleira, R.E. Santelli, E.P. Oliveira, M.F.B. Carvalho and M.A. Bezerra, Int. J. Environ. Anal. Chem., 89, 515 (2009); https://doi.org/10.1080/03067310802592763.
F. Quina and W.L. Hinze, Ind. Eng. Chem. Res., 38, 4150 (1999); https://doi.org/10.1021/ie980389n.
E. Pramauro and A. Prevot, Pure Appl. Chem, 67, 551 (1995); https://doi.org/10.1351/pac199567040551.
F. Shemirani, S.D. Abkenar, A.A. Mirroshandel, M.S. Niasari and R.R. Kozania, Anal. Sci., 19, 1453 (2003); https://doi.org/10.2116/analsci.19.1453.
A.F. Khudhair, S.I. Saeed, S.K. Abbas and H.M. Mohsin, Asian J. Chem., 29, 1065 (2017); https://doi.org/10.14233/ajchem.2017.20410.
M. Valko, H. Morris and M.T.D. Cronin, Curr. Med. Chem., 12, 1161 (2005); https://doi.org/10.2174/0929867053764635.
C.A. Sahin, I. Tokgöz and S. Bektas, J. Hazard. Mater., 181, 359 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.018.
P.T. Lieu, M. Heiskala, P.A. Peterson and Y. Yang, Mol. Aspects Med., 22, 1 (2001); https://doi.org/10.1016/S0098-2997(00)00006-6.
R.L. Nelson, Free Radic. Biol. Med., 12, 161 (1992); https://doi.org/10.1016/0891-5849(92)90010-E.
F. Shakerian, S. Dadfarnia and A.M.H. Shabani, J. Iran. Chem. Soc., 6, 594 (2009); https://doi.org/10.1007/BF03246539.
M. Ghaedi, A. Shokrollahi, R. Mehrnoosh, O. Hossaini and M. Soylak, Cent. Eur. J. Chem., 6, 488 (2008); https://doi.org/10.2478/s11532-008-0049-9.
Z.A.A. Khammas and R.A. Rashid, Int. J. Chem. Sci., 14, 955 (2016).
H. Filik and D. Giray, Food Chem., 130, 209 (2012); https://doi.org/10.1016/j.foodchem.2011.07.008.
A. Ohashi, H. Ito, C. Kanai, H. Imura and K. Ohashi, Talanta, 65, 525 (2005); https://doi.org/10.1016/j.talanta.2004.07.018.
G. Peng, Q. He, G. Zhou, Y. Li, X. Su, M. Liu and L. Fan, Anal. Methods, 10, 1039 (2010).
C. Ortega, S. Cerutti, R.A. Olsina, L.D. Martínez and M.F. Silva, J. Pharm. Biomed. Chem., 36, 721 (2004); https://doi.org/10.1016/j.jpba.2004.08.027.
https://en.wikipedia.org/wiki/Urine
C. Rosea, A. Parkera, B. Jeffersona and E. Cartmella, Sunny Health Science Center, 15, 18 (2015).
A. Kanzler, Overview of Urine Diversion Components such as Waterless Urinals, Urine Diversion Toilets, Urine Storage and Reuse Systems, Technology Review, Urine Diversion Components, Deutsche Gesellschaft für Technische Zusammenarbeit GmbH (GTZ) Sustainable SanitationEcosan Program Postfach 5180, 65726 Eschborn, Germany (2009).
I. Rodushkin and F. Odman, J. Trace Elem. Med. Biol., 14, 241 (2001); https://doi.org/10.1016/S0946-672X(01)80010-9.
R. Brodzka, M. Trzcinka-Ochocka and B. Janasik, Int. J. Occup. Med. Environ. Health, 26, 302 (2013); https://doi.org/10.2478/s13382-013-0106-2.
P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin and A. Bulatov, Anal. Chim. Acta, 911, 69 (2016); https://doi.org/10.1016/j.aca.2015.12.045.
A. Afkhami, T. Madrakian and H. Siampour, J. Braz. Chem. Soc., 17, 797 (2006); https://doi.org/10.1590/S0103-50532006000400024.
A.S. Amin, Spectrosc. Lett., 44, 424 (2011); https://doi.org/10.1080/00387010.2011.574308.
D. Harvey, Chromatographic and Electrophoretic Methods, Analytical Chemistry, Chap. 12, pp. 543-621 (2000).
M. Otto, Statistics and Computer Application in Analytical Chemistry, British Library Cataloguing, edn 3 (2016)