Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photophysical and Electroluminescence Properties of Some 2-(5,6-Dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-substituted Phenol Schiff Bases Derivatives toward Organic Light Emitting Diodes: DFT Study
Corresponding Author(s) : Naser Eltaher Eltayeb
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
In this contribution, a computational study of 2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-substitutedphenol derivatives, namely; 2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)phenol (L-H), 2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-bromophenol (L-Br) and 2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-methoxyphenol (L-OCH3) are presented as organic light emitting diodes (OLED) materials. The geometries of the molecules L-H, L-Br and L-OCH3 were optimized using density functional theory (DFT) at the B3LYP/6-31++G(d,p) level of theory. The theoretical vibrational frequencies were obtained by DFT calculations. The electronic structures were described in terms of the distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). TD-DFT at the B3LYP/6-31++G(d,p) level of theory was used to investigate the electronic spectra and to optimize the excited state. The ionization potential and electron affinity were calculated to gain insights into the hole/electron transport.The effect of electric field and its direction on the spatial distribution of HOMO and LUMO and the dipole moment were studied. Our findings suggest that the substituted derivatives of 2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-substituted phenol; L-H, L-Br and L-OCH3 can be used as promising electron transport materials for organic light emitting diodes (OLED).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.-I. Wu, C.-F. Shu, C.-H. Chien and Y.-T. Tao, Synth. Met., 148, 133 (2005); https://doi.org/10.1016/j.synthmet.2004.09.029.
- 2 W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou and K.-T. Wong, J. Mater. Chem., 20, 10113 (2010); https://doi.org/10.1039/c0jm02143a.
- M. Nomuraa, Y. Shibasakia, M. Ueda, K. Tugitab, M. Ichikawab and Y. Taniguchib, Synth. Met., 148, 155 (2005); https://doi.org/10.1016/j.synthmet.2004.09.030.
- M. Nomura, Y. Shibasaki, M. Ueda, K. Tugita, M. Ichikawa and Y.Taniguchi, Synth. Met., 151, 261 (2005); https://doi.org/10.1016/j.synthmet.2005.05.010.
- J.J. Huang, M.K. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou and Y.-H. Hung, Org. Lett., 16, 5398 (2014); https://doi.org/10.1021/ol502602t.
- M. Malathi, P.S. Mohan, R.J. Butcher and C.K. Venil, Can. J. Chem.,87, 1692 (2009); https://doi.org/10.1139/V09-139.
- Y. Zhao, C. Wu, P. Qiu, X. Li, Q. Wang, J. Chen and D. Ma, Appl. Mater. Interfaces, 8, 2635 (2016); https://doi.org/10.1021/acsami.5b10464.
- Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- Chemcraft software, http://www.chemcraftprog.com.
- N.M. O’Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823.
- M.E. Köse, W.J. Mitchell, N. Kopidakis, C.H. Chang, S.E. Shaheen, K. Kim and G. Rumbles, J. Am. Chem. Soc., 129, 14257 (2007); https://doi.org/10.1021/ja073455y.
- S.R.J. Fuyu, Arab. J. Chem.; 10.1016/j.arabjc.2013.11.037.
- S.A. Siddiqui, A. Al-Hajry and M.S. Al-Assiri, Int. J. Quantum Chem., 116, 339 (2016); https://doi.org/10.1002/qua.25034.
- NaserEltaherEltayeb, Siang Guan Teoh, Ching KhengQuah and Hoong-Kun Fun, Acta Cryst., E67, o2243 (2011).
- D. Thirion, M. Romain, J. Rault-Berthelot and C. Poriel, J. Mater. Chem., 22, 7149 (2012); https://doi.org/10.1039/c2jm16774c.
- R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds.5th edition. New York: Wiley;(1981).
- M.D. Halls and H.B. Schlegel, Chem. Mater., 13, 2632 (2001); https://doi.org/10.1021/cm010121d.
- P. Srinivasan and A.D. Stephen, J. Theor. Comput. Chem., 14, 1550038 (2015); https://doi.org/10.1142/S0219633615500388.
- A.T. Nska, K. Lewandowska, A. JeliNska, P. Garbacki, A. Podborska, P. Zalewski, I. Oszczapowicz, A. Sikora, M. Kozak and J.C.-Piontek, Scientific World J., 921049 (2015).
- K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. Woo Lee, J. Huh, Y. You and J.-J. Kim, Nat. Commun., 5, 4769 (2014); https://doi.org/10.1038/ncomms5769.
- X.Q. Ran, J.K. Feng, A.M. Ren, W.C. Li, L.Y. Zou and C.C. Sun, J. Phys. Chem. A, 113, 7933 (2009); https://doi.org/10.1021/jp903511r.
- L.Y. Zou, A.M. Ren, J.K. Feng, Y.L. Liu, X.Q. Ran and C.C. Sun, J. Phys. Chem. A, 112, 12172 (2008); https://doi.org/10.1021/jp8032462.
- N.E. Gruhn, D.A. da Silva Filho, T.G. Bill, M. Malagoli, V. Coropceanu, A. Kahn and J.L. Bredas, J. Am. Chem. Soc., 124, 7918 (2002); https://doi.org/10.1021/ja0175892.
- R.A. Marcus, Annu. Rev. Phys. Chem., 15, 155 (1964); https://doi.org/10.1146/annurev.pc.15.100164.001103.
- M. Bourass, A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S.M. Bouzzine, F. Serein-Spirau, T. Jarrosson, J.P. Lère-Porte, J.M. Sotiropoulos and M. Bouachrine, J. Mater. Environ. Sci., 6, 1542 (2015).
- D. Yokoyama, J. Mater. Chem., 21, 19187 (2011); https://doi.org/10.1039/c1jm13417e.
References
F.-I. Wu, C.-F. Shu, C.-H. Chien and Y.-T. Tao, Synth. Met., 148, 133 (2005); https://doi.org/10.1016/j.synthmet.2004.09.029.
2 W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou and K.-T. Wong, J. Mater. Chem., 20, 10113 (2010); https://doi.org/10.1039/c0jm02143a.
M. Nomuraa, Y. Shibasakia, M. Ueda, K. Tugitab, M. Ichikawab and Y. Taniguchib, Synth. Met., 148, 155 (2005); https://doi.org/10.1016/j.synthmet.2004.09.030.
M. Nomura, Y. Shibasaki, M. Ueda, K. Tugita, M. Ichikawa and Y.Taniguchi, Synth. Met., 151, 261 (2005); https://doi.org/10.1016/j.synthmet.2005.05.010.
J.J. Huang, M.K. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou and Y.-H. Hung, Org. Lett., 16, 5398 (2014); https://doi.org/10.1021/ol502602t.
M. Malathi, P.S. Mohan, R.J. Butcher and C.K. Venil, Can. J. Chem.,87, 1692 (2009); https://doi.org/10.1139/V09-139.
Y. Zhao, C. Wu, P. Qiu, X. Li, Q. Wang, J. Chen and D. Ma, Appl. Mater. Interfaces, 8, 2635 (2016); https://doi.org/10.1021/acsami.5b10464.
Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Chemcraft software, http://www.chemcraftprog.com.
N.M. O’Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823.
M.E. Köse, W.J. Mitchell, N. Kopidakis, C.H. Chang, S.E. Shaheen, K. Kim and G. Rumbles, J. Am. Chem. Soc., 129, 14257 (2007); https://doi.org/10.1021/ja073455y.
S.R.J. Fuyu, Arab. J. Chem.; 10.1016/j.arabjc.2013.11.037.
S.A. Siddiqui, A. Al-Hajry and M.S. Al-Assiri, Int. J. Quantum Chem., 116, 339 (2016); https://doi.org/10.1002/qua.25034.
NaserEltaherEltayeb, Siang Guan Teoh, Ching KhengQuah and Hoong-Kun Fun, Acta Cryst., E67, o2243 (2011).
D. Thirion, M. Romain, J. Rault-Berthelot and C. Poriel, J. Mater. Chem., 22, 7149 (2012); https://doi.org/10.1039/c2jm16774c.
R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds.5th edition. New York: Wiley;(1981).
M.D. Halls and H.B. Schlegel, Chem. Mater., 13, 2632 (2001); https://doi.org/10.1021/cm010121d.
P. Srinivasan and A.D. Stephen, J. Theor. Comput. Chem., 14, 1550038 (2015); https://doi.org/10.1142/S0219633615500388.
A.T. Nska, K. Lewandowska, A. JeliNska, P. Garbacki, A. Podborska, P. Zalewski, I. Oszczapowicz, A. Sikora, M. Kozak and J.C.-Piontek, Scientific World J., 921049 (2015).
K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. Woo Lee, J. Huh, Y. You and J.-J. Kim, Nat. Commun., 5, 4769 (2014); https://doi.org/10.1038/ncomms5769.
X.Q. Ran, J.K. Feng, A.M. Ren, W.C. Li, L.Y. Zou and C.C. Sun, J. Phys. Chem. A, 113, 7933 (2009); https://doi.org/10.1021/jp903511r.
L.Y. Zou, A.M. Ren, J.K. Feng, Y.L. Liu, X.Q. Ran and C.C. Sun, J. Phys. Chem. A, 112, 12172 (2008); https://doi.org/10.1021/jp8032462.
N.E. Gruhn, D.A. da Silva Filho, T.G. Bill, M. Malagoli, V. Coropceanu, A. Kahn and J.L. Bredas, J. Am. Chem. Soc., 124, 7918 (2002); https://doi.org/10.1021/ja0175892.
R.A. Marcus, Annu. Rev. Phys. Chem., 15, 155 (1964); https://doi.org/10.1146/annurev.pc.15.100164.001103.
M. Bourass, A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S.M. Bouzzine, F. Serein-Spirau, T. Jarrosson, J.P. Lère-Porte, J.M. Sotiropoulos and M. Bouachrine, J. Mater. Environ. Sci., 6, 1542 (2015).
D. Yokoyama, J. Mater. Chem., 21, 19187 (2011); https://doi.org/10.1039/c1jm13417e.