Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Expansion, Microhardness and Oxygen Permeation of La1-xSrxCo0.8Fe0.2O3+d Membranes
Corresponding Author(s) : H. Fansuri
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
Dense ceramic membranes acting as oxygen and electron ion-conductors can be used as the catalysts for syngas production. The La1-xSrxCo0.8Fe0.2O3+d (LSCF) systems were known to have a high ionic and electronic conductivity. In the application, the La1-xSrxCo0.8Fe0.2O3+d membranes required low thermal expansion, microhardness and high oxygen permeation flux. The changes in the expansion, hardness, and oxygen flux of the La1-xSrxCo0.8Fe0.2O3+d perovskite membranes with various strontium substitutions were studied. The magnitude of both the thermal expansion and the oxygen content of the La1-xSrxCo0.8Fe0.2O3+d membranes decreased with up to 20 % strontium substitution and then increased with 30 and 40 % strontium ion substitution. Meanwhile, the hardness and shrinkage improved by various strontium ion substitutions, except with 20 % strontium. The highest oxygen flux over La1-xSrxCo0.8Fe0.2O3+d (0.0 £ x £ 0.4) membranes in the surface exchange-controlled processes was found of the membrane with 30 % strontium substitution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.F. Sammells and M.V. Mundschau, Nonporous Inorganic Membranes for Chemical Processing, John Wiley & Sons, Weinheim, Chap. 6, p. 173 (2006).
- P.J. Gellings and H.J. Bouwmeester, Handbook of Solid State Electrochemistry, CRC Press, Inc., Chap. 14 (1997).
- K. Li, Ceramic Membranes for Separation and Reaction, John Wiley & Sons Ltd., Chap. 6, p, 176 ( 2007).
- S. Pei, M.S. Kleefisch, T.P. Kobylinski, J. Faber, C.A. Udovich, V. Zhang-McCoy, B. Dabrowski, U. Balachandran, R.L. Mieville and R.B. Poeppel, Catal. Lett., 30, 201 (1995); https://doi.org/10.1007/BF00813686.
- A. Vivet, P.M. Geffroy, T. Chartier, P. Del Gallo and N. Richet, J. Membr. Sci., 372, 373 (2011); https://doi.org/10.1016/j.memsci.2011.02.021.
- S.J. Skinner, Int. J. Inorg. Mater., 3, 113 (2001); https://doi.org/10.1016/S1466-6049(01)00004-6.
- L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, Solid State Ion., 76, 259 (1995); https://doi.org/10.1016/0167-2738(94)00244-M.
- E. Juste, A. Julian, G. Etchegoyen, P.M. Geffroy, T. Chartier, N. Richet and P. Del Gallo, J. Membr. Sci., 319, 185 (2008); https://doi.org/10.1016/j.memsci.2008.03.034.
- H. Wang, Y. Cong and W. Yang, J. Membr. Sci., 210, 259 (2002); https://doi.org/10.1016/S0376-7388(02)00361-7.
- C. Zhang, Z. Xu, X. Chang, Z. Zhang and W. Jin, J. Membr. Sci., 299, 261 (2007); https://doi.org/10.1016/j.memsci.2007.05.001.
- S. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ion., 181, 1713 (2010); https://doi.org/10.1016/j.ssi.2010.09.024.
- N. Li, A. Boréave, J.P. Deloume and F. Gaillard, Solid State Ion., 179, 1396 (2008); https://doi.org/10.1016/j.ssi.2008.01.060.
- J.N. Kuhn and U.S. Ozkan, Catal. Lett., 121, 179 (2008); https://doi.org/10.1007/s10562-007-9364-6.
- Crystal Geometry Equations for XRD. https://noppa.oulu.fi/noppa/kurssi/521104p/materiaali/521104P_kaavoja_eri_hilatyypeille_ja_ kidejarjestelmille.
- D. Marrocchelli, S.R. Bishop, H.L. Tuller and B. Yildiz, Adv. Funct. Mater., 22, 1958 (2012); https://doi.org/10.1002/adfm.201102648.
- P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao and S. Liu, J. Membr. Sci.,291, 148 (2007); https://doi.org/10.1016/j.memsci.2007.01.003.
- P. Boch and J.-C. Nièpce, Ceramic Materials: Processes, Properties, and Applications, John Wiley & Sons, Chap. 3, p. 61 (2010).
- C. Perego and P. Villa, Catal. Today, 34, 281 (1997); https://doi.org/10.1016/S0920-5861(96)00055-7.
- H. Hayashi, M. Watanabe, M. Ohuchida, H. Inaba, Y. Hiei, T. Yamamoto and M. Mori, Solid State Ion., 144, 301 (2001); https://doi.org/10.1016/S0167-2738(01)00986-9.
- W. Jin, S. Li, P. Huang, N. Xu, J. Shi and Y.S. Lin, J. Membr. Sci., 166, 13 (2000); https://doi.org/10.1016/S0376-7388(99)00245-8.
- L. Tan, X. Gu, L. Yang, L. Zhang, C. Wang and N. Xu, Sep. Purif. Technol.,32, 307 (2003); https://doi.org/10.1016/S1383-5866(03)00047-9.
- M.W. Barsoum, Fundamentals of Ceramics, IOP Publishing Ltd., Chap. 10, p. 307 (2003).
- X. Tan, Z. Wang and K. Li, Ind. Eng. Chem. Res., 49, 2895 (2010); https://doi.org/10.1021/ie901403u.
- L. Tan, L. Yang, X. Gu, W. Jin, L. Zhang and N. Xu, J. Membr. Sci., 230, 21 (2004); https://doi.org/10.1016/j.memsci.2003.10.019.
References
A.F. Sammells and M.V. Mundschau, Nonporous Inorganic Membranes for Chemical Processing, John Wiley & Sons, Weinheim, Chap. 6, p. 173 (2006).
P.J. Gellings and H.J. Bouwmeester, Handbook of Solid State Electrochemistry, CRC Press, Inc., Chap. 14 (1997).
K. Li, Ceramic Membranes for Separation and Reaction, John Wiley & Sons Ltd., Chap. 6, p, 176 ( 2007).
S. Pei, M.S. Kleefisch, T.P. Kobylinski, J. Faber, C.A. Udovich, V. Zhang-McCoy, B. Dabrowski, U. Balachandran, R.L. Mieville and R.B. Poeppel, Catal. Lett., 30, 201 (1995); https://doi.org/10.1007/BF00813686.
A. Vivet, P.M. Geffroy, T. Chartier, P. Del Gallo and N. Richet, J. Membr. Sci., 372, 373 (2011); https://doi.org/10.1016/j.memsci.2011.02.021.
S.J. Skinner, Int. J. Inorg. Mater., 3, 113 (2001); https://doi.org/10.1016/S1466-6049(01)00004-6.
L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, Solid State Ion., 76, 259 (1995); https://doi.org/10.1016/0167-2738(94)00244-M.
E. Juste, A. Julian, G. Etchegoyen, P.M. Geffroy, T. Chartier, N. Richet and P. Del Gallo, J. Membr. Sci., 319, 185 (2008); https://doi.org/10.1016/j.memsci.2008.03.034.
H. Wang, Y. Cong and W. Yang, J. Membr. Sci., 210, 259 (2002); https://doi.org/10.1016/S0376-7388(02)00361-7.
C. Zhang, Z. Xu, X. Chang, Z. Zhang and W. Jin, J. Membr. Sci., 299, 261 (2007); https://doi.org/10.1016/j.memsci.2007.05.001.
S. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ion., 181, 1713 (2010); https://doi.org/10.1016/j.ssi.2010.09.024.
N. Li, A. Boréave, J.P. Deloume and F. Gaillard, Solid State Ion., 179, 1396 (2008); https://doi.org/10.1016/j.ssi.2008.01.060.
J.N. Kuhn and U.S. Ozkan, Catal. Lett., 121, 179 (2008); https://doi.org/10.1007/s10562-007-9364-6.
Crystal Geometry Equations for XRD. https://noppa.oulu.fi/noppa/kurssi/521104p/materiaali/521104P_kaavoja_eri_hilatyypeille_ja_ kidejarjestelmille.
D. Marrocchelli, S.R. Bishop, H.L. Tuller and B. Yildiz, Adv. Funct. Mater., 22, 1958 (2012); https://doi.org/10.1002/adfm.201102648.
P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao and S. Liu, J. Membr. Sci.,291, 148 (2007); https://doi.org/10.1016/j.memsci.2007.01.003.
P. Boch and J.-C. Nièpce, Ceramic Materials: Processes, Properties, and Applications, John Wiley & Sons, Chap. 3, p. 61 (2010).
C. Perego and P. Villa, Catal. Today, 34, 281 (1997); https://doi.org/10.1016/S0920-5861(96)00055-7.
H. Hayashi, M. Watanabe, M. Ohuchida, H. Inaba, Y. Hiei, T. Yamamoto and M. Mori, Solid State Ion., 144, 301 (2001); https://doi.org/10.1016/S0167-2738(01)00986-9.
W. Jin, S. Li, P. Huang, N. Xu, J. Shi and Y.S. Lin, J. Membr. Sci., 166, 13 (2000); https://doi.org/10.1016/S0376-7388(99)00245-8.
L. Tan, X. Gu, L. Yang, L. Zhang, C. Wang and N. Xu, Sep. Purif. Technol.,32, 307 (2003); https://doi.org/10.1016/S1383-5866(03)00047-9.
M.W. Barsoum, Fundamentals of Ceramics, IOP Publishing Ltd., Chap. 10, p. 307 (2003).
X. Tan, Z. Wang and K. Li, Ind. Eng. Chem. Res., 49, 2895 (2010); https://doi.org/10.1021/ie901403u.
L. Tan, L. Yang, X. Gu, W. Jin, L. Zhang and N. Xu, J. Membr. Sci., 230, 21 (2004); https://doi.org/10.1016/j.memsci.2003.10.019.