Issue
Copyright (c) 2014 H.Q. Li
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Force Between Alizarin Red and Bovine Serum Albumin
Corresponding Author(s) : H.Q. Li
Asian Journal of Chemistry,
Vol. 26 No. 24 (2014)
Abstract
The interaction of Alizarin red and bovine serum albumin has been investigated by fluorescence spectroscopy. A 1:1 complex were found to form and the distance between the Trp-212 residues of bovine serum albumin and Alizarin red binding site was calculated to be 1.82 nm. The interaction force between Alizarin red and bovine serum albumin was suggested to be mainly van der Waals force and hydrogen bond through the calculated thermodynamic parameters of the reaction. Also ion strength effects, titration experiment of bovine serum albumin to Alizarin red were used to determine the force. Autodock research further proved the interaction mode. These experimental and theoretical data are of potential importance in understanding the mechanism of interaction between Alizarin red and bovine serum albumin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhuang, Y.H. Chi, K. Li, N. Li and S.Y. Tong, Acta Chim. Sin., 56, 827 (1998).
- Y. Yu and J.H. Ou, Nat. Sci. J. Hainan. Univ., 22, 123 (2004).
- C.R. Zhao, B.S. Liu and H.Y. Zhang, Spectrosc. Spect. Anal., 25, 92 (2005).
- X.M. Wang, Chinese J. Inorg. Chem., 21, 315 (2005).
- W.S. Liao, Y. Wu and F.Y. Wu, Chin. J. Anal. Lab., 27, 99 (2008).
- M.F. Sanner, J. Mol. Graph. Model., 17, 57 (1999).
- A. Ray, B. Koley Seth, U. Pal and S. Basu, Spectrochim. Acta A, 92, 164 (2012).
- W.L. DeLano, The PyMol, Delano Scientific, San Carlos, CA, USA (2004).
- X.Z. Feng, Z. Lin, L.J. Yang, C. Wang and C. Bai, Talanta, 47, 1223 (1998).
- H. Gao, L. Lei, J. Liu, Q. Kong, X. Chen and Z. Hu, J. Photochem. Photobiol. Chem., 167, 213 (2004).
- B. Valeur and J.C. Brochon, New Trends in Fluorescence Spectroscopy, Springer Press, Berlin, edn 6 (1999).
- L.H. Nie, H.C. Zhao, X.B. Wang and X. Wang, J. Beijing Normal Univ. Nat. Sci., 37, 87 (2001).
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981).
- K. Flora, J.D. Brennan, G.A. Baker, M.A. Doody and F.V. Bright, Biophys. J., 75, 1084 (1998).
- N. Chimpalee, D. Chimpalee, B. Boonyanitchayakul and D.T. Burns, Anal. Chim. Acta, 282, 643 (1993).
- M. Remko, J. Mol. Struct. THEOCHEM, 916, 76 (2009).
References
J. Zhuang, Y.H. Chi, K. Li, N. Li and S.Y. Tong, Acta Chim. Sin., 56, 827 (1998).
Y. Yu and J.H. Ou, Nat. Sci. J. Hainan. Univ., 22, 123 (2004).
C.R. Zhao, B.S. Liu and H.Y. Zhang, Spectrosc. Spect. Anal., 25, 92 (2005).
X.M. Wang, Chinese J. Inorg. Chem., 21, 315 (2005).
W.S. Liao, Y. Wu and F.Y. Wu, Chin. J. Anal. Lab., 27, 99 (2008).
M.F. Sanner, J. Mol. Graph. Model., 17, 57 (1999).
A. Ray, B. Koley Seth, U. Pal and S. Basu, Spectrochim. Acta A, 92, 164 (2012).
W.L. DeLano, The PyMol, Delano Scientific, San Carlos, CA, USA (2004).
X.Z. Feng, Z. Lin, L.J. Yang, C. Wang and C. Bai, Talanta, 47, 1223 (1998).
H. Gao, L. Lei, J. Liu, Q. Kong, X. Chen and Z. Hu, J. Photochem. Photobiol. Chem., 167, 213 (2004).
B. Valeur and J.C. Brochon, New Trends in Fluorescence Spectroscopy, Springer Press, Berlin, edn 6 (1999).
L.H. Nie, H.C. Zhao, X.B. Wang and X. Wang, J. Beijing Normal Univ. Nat. Sci., 37, 87 (2001).
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981).
K. Flora, J.D. Brennan, G.A. Baker, M.A. Doody and F.V. Bright, Biophys. J., 75, 1084 (1998).
N. Chimpalee, D. Chimpalee, B. Boonyanitchayakul and D.T. Burns, Anal. Chim. Acta, 282, 643 (1993).
M. Remko, J. Mol. Struct. THEOCHEM, 916, 76 (2009).