Issue
Copyright (c) 2014 Jia Zhuang*, Lin Dong, Linfeng Li, Haiyang Qin, Xinyu Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Photoelectric Properties of ZnO Arrays with Top Hollow Pits
Corresponding Author(s) : Jia Zhuang*
Asian Journal of Chemistry,
Vol. 26 No. 24 (2014)
Abstract
In this paper, ZnO array with hollow pits on the surface was prepared by hydrothermal reaction and its photoelectric properties was also reported. The morphologies of the prepared products were measured using scanning electron microscopy and the results demonstrated that dissolution of ZnO crystal could happen by regulating the reaction time under high concentration of precursor solution, which brought about the variation of ZnO arrays' surface topography and form the top hollow pits. The photoelectric properties of the ZnO array, which was used as photoelectrode for dye-sensitized solar cells (DSSCs), were investigated by current-voltage (J-V) characteristic test and the parameters indicated that hollow shape on the surface of ZnO arrays leaded to the short circuit current density (Jsc) increase and buffer layers provided by thick ZnO arrays resulted in the increase of open circuit voltage (Voc). The present research may be helpful to improve the conversion efficiency of ZnO array-based dye-sensitized solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 455 (2005).
- C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Appl. Phys. Lett., 90, 263501 (2007).
- A.B.F. Martinson, J.W. Elam, J.T. Hupp and M.J. Pellin, Nano Lett., 7, 2183 (2007).
- X.D. Wang, Y. Ding, C.J. Summers and Z.L. Wang, J. Phys. Chem. B, 108, 8773 (2004).
- S. Kar, A. Dev and S. Chaudhuri, J. Phys. Chem. B, 110, 17848 (2006).
- M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen and J. Zhang, Adv. Mater., 18, 1001 (2006).
- Z.L. Wang, J. Phys. Condens. Matter, 16, R829 (2004).
- W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, J. Cryst. Growth, 203, 186 (1999).
- L. Vayssieres, K. Keis, A. Hagfeldt and S.E. Lindquist, Chem. Mater., 13, 4395 (2001).
- M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B, 110, 22652 (2006).
References
M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 455 (2005).
C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Appl. Phys. Lett., 90, 263501 (2007).
A.B.F. Martinson, J.W. Elam, J.T. Hupp and M.J. Pellin, Nano Lett., 7, 2183 (2007).
X.D. Wang, Y. Ding, C.J. Summers and Z.L. Wang, J. Phys. Chem. B, 108, 8773 (2004).
S. Kar, A. Dev and S. Chaudhuri, J. Phys. Chem. B, 110, 17848 (2006).
M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen and J. Zhang, Adv. Mater., 18, 1001 (2006).
Z.L. Wang, J. Phys. Condens. Matter, 16, R829 (2004).
W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, J. Cryst. Growth, 203, 186 (1999).
L. Vayssieres, K. Keis, A. Hagfeldt and S.E. Lindquist, Chem. Mater., 13, 4395 (2001).
M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B, 110, 22652 (2006).