Issue
Copyright (c) 2014 N. Faleni1, M.J. Moloto2
This work is licensed under a Creative Commons Attribution 4.0 International License.
Zn and Mn Acetylacetonato Complexes as Precursors for Hexadecylamine-Capped ZnO and MnO Nanoparticles and their Water Solubility
Corresponding Author(s) : N. Faleni1
Asian Journal of Chemistry,
Vol. 26 No. 23 (2014)
Abstract
The synthesis of zinc and manganese oxide nanoparticles of uniform sizes and their manipulation from hydrophobic to hydrophilic is described. A single-source precursor route was used by using the metal acetylacetonato complexes. The complexes (Zn and Mn acetylacetonato) were thermolyzed in hexadecylamine to produce ZnO and MnO nanoparticles, which were subsequently made soluble by ligand exchange reaction involving pyridine. Pyridine was replaced by glucose and glucuronic acid in that reaction. The absorption and emission spectra showed the typical features of quantum confinement for all the nanoparticles. The change in the capping groups, from hexadecylamine to glucose and glucuronic acid, resulted in the red shifts in the absorption and emission features. The as-synthesized ZnO and MnO nanoparticles were shown to be stable and soluble in water. The morphology, crystalline form and phase composition of ZnO and MnO nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The TEM images revealed spherical shaped ZnO and MnO nanoparticles with the average particle size distribution between 2-8 nm. The broadness of the diffraction peaks indicated the presence of small crystallites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Eychmüller, J. Phys. Chem. B, 104, 6514 (2000).
- A.P. Alivisatos, Science, 289, 736 (2000).
- R. Vacassy, C. Guizard, J. Palmeri and L. Cot, Nanostruct. Mater., 10, 77 (1998).
- C.R. Xia, H.Q. Cao, H. Wang, P.H. Yang, G.Y. Meng and D.K. Peng, J. Membr. Sci., 162, 181 (1999).
- H. Kurosawa, Y.T. Yan, N. Miura and N. Yamazoe, Solid State Ion., 79, 338 (1995).
- J. Riegel, H. Neumann and H.-M. Wiedenmann, Solid State Ion., 152, 783 (2002).
- N. Miura, M. Nakatou and S. Zhuiykov, Sens. Actuators B, 93, 221 (2003).
- W. Li, S.Y. Yu and E. Iglesia, J. Mol. Catal. Chem., 203, 175 (2001).
- A. Knell, P. Barnickel, A. Baiker and A. Wokaun, J. Catal., 137, 306 (1992).
- J. Gottmann and E.W. Kreutz, Surf. Coat. Technol., 116-119, 1189 (1999).
- W. Stichert and F. Schüth, Chem. Mater., 10, 2020 (1998).
- N.R. Jana, Y. Chen and X. Peng, Chem. Mater., 16, 3931 (2004).
- P.G. McCormick, T. Tsuzuki, J.S. Robinson and J. Ding, Adv. Mater., 13, 1008 (2001).
- H. Kominami, M. Kohno, Y. Takada, M. Inoue, T. Inui and Y. Kera, Ind. Eng. Chem. Res., 38, 3925 (1999).
- K. Okuyama, Y. Kousaka, N. Tohge, S. Yamamoto, J.J. Wu, R.C. Flagan and J.H. Seinfeld, AIChE J., 32, 2010 (1986).
- J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang and T. Hyeon, J. Am. Chem. Soc., 125, 6553 (2003).
- J. Tang, J. Fabbri, R.D. Robinson, Y. Zhu, I.P. Herman, M.L. Steigerwald and L.E. Brus, Chem. Mater., 16, 1336 (2004).
- C.N.R. Rao, B.C. Satishkumar and A. Govindaraj, Chem. Commun., 1581 (1997).
- G. Oskam and F.J.P. Poot, J. Sol-Gel Technol., 37, 157 (2006).
- T. Trindade, P. O'Brien and X. Zhang, Chem. Mater., 9, 523 (1997).
- M.J. Moloto, N. Revaprasadu, P. O'Brien and M.A. Malik, J. Mater. Sci. Mater. Electron., 15, 313 (2004).
- D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 1, 207 (2001).
- M. Mlambo, M.J. Moloto, N. Moloto and P.S. Mdluli, Mater. Res. Bull., 48, 2196 (2013).
- T. Tsuchiya, A. Watanabe, Y. Imai, H. Niino, I. Yamaguchi, T. Manabe, T. Kumagai and S. Mizuta, Jpn. J. Appl. Phys., 38, L1112 (1999).
- H. Haug and S.W. Koch, Quantum Theory of the Optical and Electr-onic Properties of Semiconductors, World Scientific Publishing Company, Incorporated, edn. 3 (1994).
- K.A. Willis, A.W. Ammerman and M. Lauren, Chem. Commun., 47, 9507 (2011).
- L. Guo, S.H. Yang, C.L. Yang, P. Yu, J.N. Wang, W.K. Ge and G.K.L. Wong, Appl. Phys. Lett., 76, 2901 (2000).
- C.A. Smith, H.W. Lee, V.J. Leppert and S.H. Risbud, Appl. Phys. Lett., 75, 1688 (1999).
- M. Kuno, J.K. Lee, B.O. Dabbousi, F.V. Mikulec and M.G. Bawendi, J. Chem. Phys., 106, 9869 (1997).
- C. Montgomery and D. Montgomery, Phys. Rev., 56, 10 (1939).
- P.M. Shumbula, M.J. Moloto, T.R. Tshikhudo and M. Fernandes, S. Afr. J. Sci., 106, 7 (2010).
- R.W. Meulenberg, S. Bryan, C.S. Yun and G.F. Strouse, J. Phys. Chem. B, 106, 7774 (2002).
- W.C.W. Chan and S. Nie, Science, 281, 2016 (1998).
- A.M. Derfus, W.C.W. Chan and S.N. Bhatia, Adv. Mater., 16, 961 (2004).
References
A. Eychmüller, J. Phys. Chem. B, 104, 6514 (2000).
A.P. Alivisatos, Science, 289, 736 (2000).
R. Vacassy, C. Guizard, J. Palmeri and L. Cot, Nanostruct. Mater., 10, 77 (1998).
C.R. Xia, H.Q. Cao, H. Wang, P.H. Yang, G.Y. Meng and D.K. Peng, J. Membr. Sci., 162, 181 (1999).
H. Kurosawa, Y.T. Yan, N. Miura and N. Yamazoe, Solid State Ion., 79, 338 (1995).
J. Riegel, H. Neumann and H.-M. Wiedenmann, Solid State Ion., 152, 783 (2002).
N. Miura, M. Nakatou and S. Zhuiykov, Sens. Actuators B, 93, 221 (2003).
W. Li, S.Y. Yu and E. Iglesia, J. Mol. Catal. Chem., 203, 175 (2001).
A. Knell, P. Barnickel, A. Baiker and A. Wokaun, J. Catal., 137, 306 (1992).
J. Gottmann and E.W. Kreutz, Surf. Coat. Technol., 116-119, 1189 (1999).
W. Stichert and F. Schüth, Chem. Mater., 10, 2020 (1998).
N.R. Jana, Y. Chen and X. Peng, Chem. Mater., 16, 3931 (2004).
P.G. McCormick, T. Tsuzuki, J.S. Robinson and J. Ding, Adv. Mater., 13, 1008 (2001).
H. Kominami, M. Kohno, Y. Takada, M. Inoue, T. Inui and Y. Kera, Ind. Eng. Chem. Res., 38, 3925 (1999).
K. Okuyama, Y. Kousaka, N. Tohge, S. Yamamoto, J.J. Wu, R.C. Flagan and J.H. Seinfeld, AIChE J., 32, 2010 (1986).
J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang and T. Hyeon, J. Am. Chem. Soc., 125, 6553 (2003).
J. Tang, J. Fabbri, R.D. Robinson, Y. Zhu, I.P. Herman, M.L. Steigerwald and L.E. Brus, Chem. Mater., 16, 1336 (2004).
C.N.R. Rao, B.C. Satishkumar and A. Govindaraj, Chem. Commun., 1581 (1997).
G. Oskam and F.J.P. Poot, J. Sol-Gel Technol., 37, 157 (2006).
T. Trindade, P. O'Brien and X. Zhang, Chem. Mater., 9, 523 (1997).
M.J. Moloto, N. Revaprasadu, P. O'Brien and M.A. Malik, J. Mater. Sci. Mater. Electron., 15, 313 (2004).
D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 1, 207 (2001).
M. Mlambo, M.J. Moloto, N. Moloto and P.S. Mdluli, Mater. Res. Bull., 48, 2196 (2013).
T. Tsuchiya, A. Watanabe, Y. Imai, H. Niino, I. Yamaguchi, T. Manabe, T. Kumagai and S. Mizuta, Jpn. J. Appl. Phys., 38, L1112 (1999).
H. Haug and S.W. Koch, Quantum Theory of the Optical and Electr-onic Properties of Semiconductors, World Scientific Publishing Company, Incorporated, edn. 3 (1994).
K.A. Willis, A.W. Ammerman and M. Lauren, Chem. Commun., 47, 9507 (2011).
L. Guo, S.H. Yang, C.L. Yang, P. Yu, J.N. Wang, W.K. Ge and G.K.L. Wong, Appl. Phys. Lett., 76, 2901 (2000).
C.A. Smith, H.W. Lee, V.J. Leppert and S.H. Risbud, Appl. Phys. Lett., 75, 1688 (1999).
M. Kuno, J.K. Lee, B.O. Dabbousi, F.V. Mikulec and M.G. Bawendi, J. Chem. Phys., 106, 9869 (1997).
C. Montgomery and D. Montgomery, Phys. Rev., 56, 10 (1939).
P.M. Shumbula, M.J. Moloto, T.R. Tshikhudo and M. Fernandes, S. Afr. J. Sci., 106, 7 (2010).
R.W. Meulenberg, S. Bryan, C.S. Yun and G.F. Strouse, J. Phys. Chem. B, 106, 7774 (2002).
W.C.W. Chan and S. Nie, Science, 281, 2016 (1998).
A.M. Derfus, W.C.W. Chan and S.N. Bhatia, Adv. Mater., 16, 961 (2004).