Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Acetic Acid Pretreatment Catalyzed by Fe(NO3)3 of Corn Stover
Corresponding Author(s) : Xiaoyan Yu
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
Corn stover was treated with acetic acid in presence of Fe(NO3)3 as catalyst to enhance its sugar yields in the hydrolysis. Kinetics of acetic acid pretreatment catalyzed by Fe(NO3)3 was investigated in order to verify the feasibility of the catalytic reaction. The results showed that Fe(NO3)3 could effectively improve the hydrolysis rate of hemicelluloses and cellulose. Ferric nitrate not only greatly increase the rate of xylose and glucose formed (k1), but also decrease the degradation rate of the sugar formed (k2). When pretreatment catalyzed by Fe(NO3)3, selectivity coefficient S value, that is the ratio of hydrolysis rate k1 to degradation rate k2, are more than 1 and it increases gradually with the increase of acetic acid concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); doi:10.1021/cr068360d.
- M. Carrier, A. Loppinet-Serani, D. Denux, J.-M. Lasnier, F. Ham-Pichavant, F. Cansell and C. Aymonier, Biomass Bioenergy, 35, 298 (2011); doi:10.1016/j.biombioe.2010.08.067.
- C.X. Wan and Y.B. Li, Bioresour. Technol., 102, 9788 (2011); doi:10.1016/j.biortech.2011.08.004.
- N. Mosier, R. Hendrickson, N. Ho, M. Sedlak and M.R. Ladisch, Bioresour. Technol., 96, 1986 (2005); doi:10.1016/j.biortech.2005.01.013.
- A.P. Redding, Z. Wang, D.R. Keshwani and J.J. Cheng, Bioresour. Technol., 102, 1415 (2011); doi:10.1016/j.biortech.2010.09.053.
- B. Zhang, L. Wang, A. Shahbazi, O. Diallo and A. Whitmore, Bioresour. Technol., 102, 9308 (2011); doi:10.1016/j.biortech.2011.07.008.
- J.R. Jensen, J.E. Morinelly, K.R. Gossen, M.J. Brodeur-Campbell and D.R. Shonnard, Bioresour. Technol., 101, 2317 (2010); doi:10.1016/j.biortech.2009.11.038.
- C. Cara, E. Ruiz, J.M. Oliva, F. Sáez and E. Castro, Bioresour. Technol., 99, 1869 (2008); doi:10.1016/j.biortech.2007.03.037.
- T.A. Lloyd and C.E. Wyman, Bioresour. Technol., 96, 1967 (2005); doi:10.1016/j.biortech.2005.01.011.
- X. Yang, S. Zhang, Z. Zuo, X. Men and S. Tian, Bioresour. Technol., 102, 7840 (2011); doi:10.1016/j.biortech.2011.05.048.
- S. Jin and H.Z. Chen, Process Biochem., 42, 188 (2007); doi:10.1016/j.procbio.2006.07.030.
- S. Zhu, Y. Wu, Z. Yu, X. Zhang, H. Li and M. Gao, Bioresour. Technol., 97, 1964 (2006); doi:10.1016/j.biortech.2005.08.008.
- A.K. Mathew, K. Chaney, M. Crook and A.C. Humphries, Bioresour. Technol., 102, 6547 (2011); doi:10.1016/j.biortech.2011.03.067.
- H. Yu, X. Zhang, L. Song, J. Ke, C. Xu, W. Du and J. Zhang, J. Biosci. Bioeng., 110, 660 (2010); doi:10.1016/j.jbiosc.2010.08.002.
- A.T.W.M. Hendriks and G. Zeeman, Bioresour. Technol., 100, 10 (2009); doi:10.1016/j.biortech.2008.05.027.
- R. Zhao, Z. Zhang, R. Zhang, M. Li, Z. Lei, M. Utsumi and N. Sugiura, Bioresour. Technol., 101, 990 (2010); doi:10.1016/j.biortech.2009.09.020.
- Y.L. Lu and N.S. Mosier, Biotechnol. Bioeng., 101, 1170 (2008); doi:10.1002/bit.22008.
- Y. Sun, X. Lu, S. Zhang, R. Zhang and X. Wang, Bioresour. Technol., 102, 2936 (2011); doi:10.1016/j.biortech.2010.11.076.
- R. Aguilar, J. A. Ramíez, G. Garrote and M. Vázquez, J. Food. Eng., 55, 309 (2002); doi:10.1016/S0260-8774(02)00106-1.
- J.E. Morinelly, J.R. Jensen, M. Browne, T.B. Co and D.R. Shonnard, Ind. Eng. Chem. Res., 48, 9877 (2009); doi:10.1021/ie900793p.
References
G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); doi:10.1021/cr068360d.
M. Carrier, A. Loppinet-Serani, D. Denux, J.-M. Lasnier, F. Ham-Pichavant, F. Cansell and C. Aymonier, Biomass Bioenergy, 35, 298 (2011); doi:10.1016/j.biombioe.2010.08.067.
C.X. Wan and Y.B. Li, Bioresour. Technol., 102, 9788 (2011); doi:10.1016/j.biortech.2011.08.004.
N. Mosier, R. Hendrickson, N. Ho, M. Sedlak and M.R. Ladisch, Bioresour. Technol., 96, 1986 (2005); doi:10.1016/j.biortech.2005.01.013.
A.P. Redding, Z. Wang, D.R. Keshwani and J.J. Cheng, Bioresour. Technol., 102, 1415 (2011); doi:10.1016/j.biortech.2010.09.053.
B. Zhang, L. Wang, A. Shahbazi, O. Diallo and A. Whitmore, Bioresour. Technol., 102, 9308 (2011); doi:10.1016/j.biortech.2011.07.008.
J.R. Jensen, J.E. Morinelly, K.R. Gossen, M.J. Brodeur-Campbell and D.R. Shonnard, Bioresour. Technol., 101, 2317 (2010); doi:10.1016/j.biortech.2009.11.038.
C. Cara, E. Ruiz, J.M. Oliva, F. Sáez and E. Castro, Bioresour. Technol., 99, 1869 (2008); doi:10.1016/j.biortech.2007.03.037.
T.A. Lloyd and C.E. Wyman, Bioresour. Technol., 96, 1967 (2005); doi:10.1016/j.biortech.2005.01.011.
X. Yang, S. Zhang, Z. Zuo, X. Men and S. Tian, Bioresour. Technol., 102, 7840 (2011); doi:10.1016/j.biortech.2011.05.048.
S. Jin and H.Z. Chen, Process Biochem., 42, 188 (2007); doi:10.1016/j.procbio.2006.07.030.
S. Zhu, Y. Wu, Z. Yu, X. Zhang, H. Li and M. Gao, Bioresour. Technol., 97, 1964 (2006); doi:10.1016/j.biortech.2005.08.008.
A.K. Mathew, K. Chaney, M. Crook and A.C. Humphries, Bioresour. Technol., 102, 6547 (2011); doi:10.1016/j.biortech.2011.03.067.
H. Yu, X. Zhang, L. Song, J. Ke, C. Xu, W. Du and J. Zhang, J. Biosci. Bioeng., 110, 660 (2010); doi:10.1016/j.jbiosc.2010.08.002.
A.T.W.M. Hendriks and G. Zeeman, Bioresour. Technol., 100, 10 (2009); doi:10.1016/j.biortech.2008.05.027.
R. Zhao, Z. Zhang, R. Zhang, M. Li, Z. Lei, M. Utsumi and N. Sugiura, Bioresour. Technol., 101, 990 (2010); doi:10.1016/j.biortech.2009.09.020.
Y.L. Lu and N.S. Mosier, Biotechnol. Bioeng., 101, 1170 (2008); doi:10.1002/bit.22008.
Y. Sun, X. Lu, S. Zhang, R. Zhang and X. Wang, Bioresour. Technol., 102, 2936 (2011); doi:10.1016/j.biortech.2010.11.076.
R. Aguilar, J. A. Ramíez, G. Garrote and M. Vázquez, J. Food. Eng., 55, 309 (2002); doi:10.1016/S0260-8774(02)00106-1.
J.E. Morinelly, J.R. Jensen, M. Browne, T.B. Co and D.R. Shonnard, Ind. Eng. Chem. Res., 48, 9877 (2009); doi:10.1021/ie900793p.