Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Adsorption Selectivity of Inorganic Oxyanions' by Granular Activated Carbon Modified with Cationic Surfactant
Corresponding Author(s) : W.F. Chen
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
A granular activated carbon (GAC) modified by cationic surfactant cetyltrimethylammonium chloride (GAC-CTAC) was investigated for its adsorption of oxyanions (perchlorate, bromate, arsenate, nitrate, sulfate and phosphate). GAC-CTAC showed adsorption capacities 4-7 times those of virgin granular activated carbon. The free energies of adsorption by virgin granular activated carbon and GAC-CTAC showed that cationic surfactant modification changed the interaction between adsorbent and adsorbate. Ion exchange played a major role in adsorption with GAC-CTAC. In addition, GAC-CTAC showed different levels of selectivity towards oxyanions. Results reveal that GAC-CTAC was more selective towards perchlorate, bromate and nitrate than arsenate, sulfate and phosphate. Moreover, selectivity was highly dependent upon oxyanion's free energies of hydration and adsorption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Kim, S. Komarneni, R. Parette, F.S. Cannon and H. Katsuki, Appl. Clay Sci., 51, 158 (2011); doi:10.1016/j.clay.2010.11.025.
- A. Bhatnagar and M. Sillanpää, Sep. Sci. Technol., 47, 89 (2012); doi:10.1080/01496395.2011.606866.
- C. Namasivayam and S. Senthilkumar, Ind. Eng. Chem. Res., 37, 4816 (1998); doi:10.1021/ie970774x.
- X.C. Le, S. Yalcin and M. Ma, Environ. Sci. Technol., 34, 2342 (2000); doi:10.1021/es991203u.
- P.R. Grossl, M. Eick, D.L. Sparks, S. Goldberg and C.C. Ainsworth, Environ. Sci. Technol., 31, 321 (1997); doi:10.1021/es950654l.
- T. Viraraghavan, K.S. Subramanian and J.A. Aruldoss, Water Sci. Technol., 40, 69 (1999); doi:10.1016/S0273-1223(99)00432-1.
- M.N. Nadagouda, J. Pressman, C. White, T.F. Speth and D.L. McCurry, J. Hazard. Mater., 188, 19 (2011); doi:10.1016/j.jhazmat.2011.01.005.
- W.F. Chen, Z.Y. Zhang, Q. Li and H.Y. Wang, Chem. Eng. J., 203, 319 (2012); doi:10.1016/j.cej.2012.07.047.
- J. Patterson, R. Parette, F.S. Cannon, C. Lutes and T. Henderson, Environ. Eng. Sci., 28, 249 (2011); doi:10.1089/ees.2010.0075.
- H.J. Hong, H. Kim, K. Baek and J.W. Yang, Desalination, 223, 221 (2008); doi:10.1016/j.desal.2007.01.210.
- Y. Zeng, H. Woo, G. Lee and J. Park, Micropor. Mesopor. Mater., 130, 83 (2010); doi:10.1016/j.micromeso.2009.10.016.
- V. Swarnkar, N. Agrawal and R. Tomar, J. Disper. Sci. Technol., 33, 919 (2012); doi:10.1080/01932691.2011.580183.
- R. Parette, F.S. Cannon and K. Weeks, Water Res., 39, 4683 (2005); doi:10.1016/j.watres.2005.09.014.
- J.H. Xu, N.Y. Gao, Y. Deng, M.H. Sui and Y.L. Tang, Desalination, 275, 87 (2011); doi:10.1016/j.desal.2011.02.036.
- D.W. Cho, C.M. Chon, Y. Kim, B.H. Jeon, F.W. Schwartz, E.S. Lee and H. Song, Chem. Eng. J., 175, 298 (2011); doi:10.1016/j.cej.2011.09.108.
- A. Erto, A. Lancia and D. Musmarra, Micropor. Mesopor. Mater., 154, 45 (2010); doi:10.1016/j.micromeso.2011.10.041.
- 17 B. Doušová, M. Lhotka, T. Grygar, V. Machovič and L. Herzogová, Appl. Clay Sci., 54, 166 (2011); doi:10.1016/j.clay.2011.08.004.
- R. Chitrakar, Y. Makita, A. Sonoda and T. Hirotsu, Appl. Clay Sci., 51, 375 (2011); doi:10.1016/j.clay.2010.11.033.
- R. Mahmudov and C.P. Huang, Sep. Purif. Technol., 77, 294 (2011); doi:10.1016/j.seppur.2010.12.019.
- B.H. Gu, G.M. Brown, P.V. Bonnesen, L.Y. Liang, B.A. Moyer, R. Ober and S.D. Alexandratos, Environ. Sci. Technol., 34, 1075 (2000); doi:10.1021/es990951g.
- H. Zeng, B. Fisher and D.E. Giammar, Environ. Sci. Technol., 42, 147 (2008); doi:10.1021/es071553d.
- S.C.N. Tang, I.M.C. Lo and M.S.H. Mak, Water Air Soil Pollut., 223, 1713 (2012); doi:10.1007/s11270-011-0977-4.
- Y. Wei and R.A. Latour, Langmuir, 24, 6721 (2008); doi:10.1021/la8005772.
- R.H. Mahmudov and C.P. Huang, Sep. Purif. Technol., 70, 329 (2010); doi:10.1016/j.seppur.2009.10.016.
- Y. Marcus, J. Chem. Soc., Faraday Trans., 87, 2995 (1991); doi:10.1039/ft9918702995.
- J. Behnsen and B. Riebe, Appl. Geochem., 23, 2746 (2008); doi:10.1016/j.apgeochem.2008.06.019.
References
J.Y. Kim, S. Komarneni, R. Parette, F.S. Cannon and H. Katsuki, Appl. Clay Sci., 51, 158 (2011); doi:10.1016/j.clay.2010.11.025.
A. Bhatnagar and M. Sillanpää, Sep. Sci. Technol., 47, 89 (2012); doi:10.1080/01496395.2011.606866.
C. Namasivayam and S. Senthilkumar, Ind. Eng. Chem. Res., 37, 4816 (1998); doi:10.1021/ie970774x.
X.C. Le, S. Yalcin and M. Ma, Environ. Sci. Technol., 34, 2342 (2000); doi:10.1021/es991203u.
P.R. Grossl, M. Eick, D.L. Sparks, S. Goldberg and C.C. Ainsworth, Environ. Sci. Technol., 31, 321 (1997); doi:10.1021/es950654l.
T. Viraraghavan, K.S. Subramanian and J.A. Aruldoss, Water Sci. Technol., 40, 69 (1999); doi:10.1016/S0273-1223(99)00432-1.
M.N. Nadagouda, J. Pressman, C. White, T.F. Speth and D.L. McCurry, J. Hazard. Mater., 188, 19 (2011); doi:10.1016/j.jhazmat.2011.01.005.
W.F. Chen, Z.Y. Zhang, Q. Li and H.Y. Wang, Chem. Eng. J., 203, 319 (2012); doi:10.1016/j.cej.2012.07.047.
J. Patterson, R. Parette, F.S. Cannon, C. Lutes and T. Henderson, Environ. Eng. Sci., 28, 249 (2011); doi:10.1089/ees.2010.0075.
H.J. Hong, H. Kim, K. Baek and J.W. Yang, Desalination, 223, 221 (2008); doi:10.1016/j.desal.2007.01.210.
Y. Zeng, H. Woo, G. Lee and J. Park, Micropor. Mesopor. Mater., 130, 83 (2010); doi:10.1016/j.micromeso.2009.10.016.
V. Swarnkar, N. Agrawal and R. Tomar, J. Disper. Sci. Technol., 33, 919 (2012); doi:10.1080/01932691.2011.580183.
R. Parette, F.S. Cannon and K. Weeks, Water Res., 39, 4683 (2005); doi:10.1016/j.watres.2005.09.014.
J.H. Xu, N.Y. Gao, Y. Deng, M.H. Sui and Y.L. Tang, Desalination, 275, 87 (2011); doi:10.1016/j.desal.2011.02.036.
D.W. Cho, C.M. Chon, Y. Kim, B.H. Jeon, F.W. Schwartz, E.S. Lee and H. Song, Chem. Eng. J., 175, 298 (2011); doi:10.1016/j.cej.2011.09.108.
A. Erto, A. Lancia and D. Musmarra, Micropor. Mesopor. Mater., 154, 45 (2010); doi:10.1016/j.micromeso.2011.10.041.
17 B. Doušová, M. Lhotka, T. Grygar, V. Machovič and L. Herzogová, Appl. Clay Sci., 54, 166 (2011); doi:10.1016/j.clay.2011.08.004.
R. Chitrakar, Y. Makita, A. Sonoda and T. Hirotsu, Appl. Clay Sci., 51, 375 (2011); doi:10.1016/j.clay.2010.11.033.
R. Mahmudov and C.P. Huang, Sep. Purif. Technol., 77, 294 (2011); doi:10.1016/j.seppur.2010.12.019.
B.H. Gu, G.M. Brown, P.V. Bonnesen, L.Y. Liang, B.A. Moyer, R. Ober and S.D. Alexandratos, Environ. Sci. Technol., 34, 1075 (2000); doi:10.1021/es990951g.
H. Zeng, B. Fisher and D.E. Giammar, Environ. Sci. Technol., 42, 147 (2008); doi:10.1021/es071553d.
S.C.N. Tang, I.M.C. Lo and M.S.H. Mak, Water Air Soil Pollut., 223, 1713 (2012); doi:10.1007/s11270-011-0977-4.
Y. Wei and R.A. Latour, Langmuir, 24, 6721 (2008); doi:10.1021/la8005772.
R.H. Mahmudov and C.P. Huang, Sep. Purif. Technol., 70, 329 (2010); doi:10.1016/j.seppur.2009.10.016.
Y. Marcus, J. Chem. Soc., Faraday Trans., 87, 2995 (1991); doi:10.1039/ft9918702995.
J. Behnsen and B. Riebe, Appl. Geochem., 23, 2746 (2008); doi:10.1016/j.apgeochem.2008.06.019.