Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of TiO2 with Cotton as Template and Its Applications as Photocatalysis
Corresponding Author(s) : Jing Wang
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
Spherical titanium dioxide photocatalytic material was prepared by the combined method of template and sol-gel method with cotton as the template. The sample surface morphology, composition and crystal structure were characterized by scanning electron microscopy, X-ray diffraction. The photodegradation experiment was also investigated with phenol as the substrate. The results showed that the prepared TiO2 distributed in three-dimensional spherical structure of cotton, the grain size of TiO2 was around 25 nm and the degradation rate was 92 % under the ultraviolet light irradiating for 4 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol., 25, 1522 (1991); doi:10.1021/es00021a001.
- M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); doi:10.1016/j.rser.2005.01.009.
- 3 S.A. Grinshpun, A. Adhikari, T. Honda, K.Y. Kim, M. Toivola, K.S. Ramchander Rao and T. Reponen, Environ. Sci. Technol., 41, 606 (2007); doi:10.1021/es061373o.
- Z.-B. Xu and X.-W. Wei, J. Chin. Electron Microsc. Soc., 25, 226 (2006).
- J.-H. He and T. Kunitake, Chem. Mater., 16, 2656 (2004); doi:10.1021/cm049548l.
- B.T. Holland, C.F. Blanford and A. Stein, Science, 281, 538 (1998); doi:10.1126/science.281.5376.538.
- S. Eiden and G. Maret, J. Colloid Interf. Sci., 250, 281 (2002); doi:10.1006/jcis.2002.8315.
- Y. Zhao and L. Jiang, Adv. Mater., 21, 3621 (2009); doi:10.1002/adma.200803645.
- Y.D. Yin, Y. Lu, B. Gates and Y.N. Xia, Chem. Mater., 13, 1146 (2001); doi:10.1021/cm000933u.
- P. Jiang, J.F. Begone and V.L. Colvin, Science, 291, 453 (2001); doi:10.1126/science.291.5503.453.
- J.Q. Li, Q.-L. Li, J.-X. Zhao and B.-R. Li, Acta Chim. Sin., 68, 1845 (2010).
- J. Zeng, S. Liu, J. Cai and L. Zhang, J. Phys. Chem. C, 114, 7806 (2010); doi:10.1021/jp1005617.
References
D.F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol., 25, 1522 (1991); doi:10.1021/es00021a001.
M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); doi:10.1016/j.rser.2005.01.009.
3 S.A. Grinshpun, A. Adhikari, T. Honda, K.Y. Kim, M. Toivola, K.S. Ramchander Rao and T. Reponen, Environ. Sci. Technol., 41, 606 (2007); doi:10.1021/es061373o.
Z.-B. Xu and X.-W. Wei, J. Chin. Electron Microsc. Soc., 25, 226 (2006).
J.-H. He and T. Kunitake, Chem. Mater., 16, 2656 (2004); doi:10.1021/cm049548l.
B.T. Holland, C.F. Blanford and A. Stein, Science, 281, 538 (1998); doi:10.1126/science.281.5376.538.
S. Eiden and G. Maret, J. Colloid Interf. Sci., 250, 281 (2002); doi:10.1006/jcis.2002.8315.
Y. Zhao and L. Jiang, Adv. Mater., 21, 3621 (2009); doi:10.1002/adma.200803645.
Y.D. Yin, Y. Lu, B. Gates and Y.N. Xia, Chem. Mater., 13, 1146 (2001); doi:10.1021/cm000933u.
P. Jiang, J.F. Begone and V.L. Colvin, Science, 291, 453 (2001); doi:10.1126/science.291.5503.453.
J.Q. Li, Q.-L. Li, J.-X. Zhao and B.-R. Li, Acta Chim. Sin., 68, 1845 (2010).
J. Zeng, S. Liu, J. Cai and L. Zhang, J. Phys. Chem. C, 114, 7806 (2010); doi:10.1021/jp1005617.