Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Convenient Synthesis of Antimony Nanorods using 1,2,4,5-Benzenetetracarboxylic Acid
Corresponding Author(s) : Ntaote David Shooto
Asian Journal of Chemistry,
Vol. 31 No. 6 (2019): Vol 31 Issue 6
Abstract
1,2,4,5-Benzenetetracarboxylic acid (H4Btec) is an ideal candidate for the synthesis of new coordination polymers compounds because of its four carboxyl groups bridging moieties with antimony ions having distorted coordination configuration. This work reports a new compound of coordination polymer, namely, [Sb2(C4H4O6)2(Btec)(H2O)]n, [(C4H4O6)2 = tartrate and Btec4− = 1,2,4,5-benzenetetracarboxylic anion] has been synthesized under reflux. The physical and chemical properties of coordination polymers; Sb2(C4H4O6)2(Btec)(H2O) was affirmed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analyses and photoluminescence spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.F. Marques, C.C. Correa, S.J.L. Ribeiro, M.V. dos Santos, J.D.L. Dutra, R.O. Freire and F.C. Machado, J. Solid State Chem., 227, 68 (2015); https://doi.org/10.1016/j.jssc.2015.03.020.
- T.R. Cook, Y.R. Zheng and P.J. Stang, Chem. Rev., 113, 734 (2013); https://doi.org/10.1021/cr3002824.
- D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas and M. Eddaoudi, J. Am. Chem. Soc., 137, 5421 (2015); https://doi.org/10.1021/jacs.5b00450.
- R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata and H. Kitagawa, Nat. Mater., 9, 565 (2010); https://doi.org/10.1038/nmat2769.
- A. Maleki, B. Hayati, M. Naghizadeh and S.W. Joo, J. Ind. Eng. Chem., 28, 211 (2015); https://doi.org/10.1016/j.jiec.2015.02.016.
- K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae and J.R. Long, Chem. Rev., 112, 724 (2012); https://doi.org/10.1021/cr2003272.
- J.R. Li, R.J. Kuppler and H.C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); https://doi.org/10.1039/b802426j.
- I. Luz, F.X. Llabrés i Xamena and A. Corma, J. Catal., 276, 134 (2010); https://doi.org/10.1016/j.jcat.2010.09.010.
- S. Mendiratta, C.H. Lee, S.Y. Lee, Y.C. Kao, B.C. Chang, Y.H. Lo and K.L. Lu, Molecules, 20, 8941 (2015); https://doi.org/10.3390/molecules20058941.
- J. An, S.J. Geib and N.L. Rosi, J. Am. Chem. Soc., 131, 8376 (2009); https://doi.org/10.1021/ja902972w.
- X. Chen, Y. Tong, M.M. Han, K.L. Cao and Y.L. Feng, Inorg. Chem. Commun., 40, 62 (2014); https://doi.org/10.1016/j.inoche.2013.11.033.
- Y. Song, X. Li, C. Wei, J. Fu, F. Xu, H. Tan, J. Tang and L. Wang, Sci. Rep., 5, 8401 (2015); https://doi.org/10.1038/srep08401.
- J.P. Geng, Z.X. Wang, X. He, H.P. Xiao and M.X. Li, Inorg. Chem. Commun., 14, 997 (2011); https://doi.org/10.1016/j.inoche.2011.03.054.
- Q. Huang, L. Diao, C. Zhang and F. Lei, Inorg. Chem. Commun., 14, 1889 (2011); https://doi.org/10.1016/j.inoche.2011.09.004.
- S. Hu, P. Zhang, F.Y. Yu, M.X. Chen and D.R. Lin, Polyhedron, 67, 388 (2014); https://doi.org/10.1016/j.poly.2013.09.012.
- B. Zheng, D. Zhang, Y. Peng, Q. Huo and Y. Liu, Inorg. Chem. Commun., 16, 70 (2012); https://doi.org/10.1016/j.inoche.2011.11.034.
- W.J. Ji, Q.G. Zhai, S.N. Li, Y.C. Jiang and M.C. Hu, Inorg. Chem. Commun., 24, 209 (2012); https://doi.org/10.1016/j.inoche.2012.07.014.
References
L.F. Marques, C.C. Correa, S.J.L. Ribeiro, M.V. dos Santos, J.D.L. Dutra, R.O. Freire and F.C. Machado, J. Solid State Chem., 227, 68 (2015); https://doi.org/10.1016/j.jssc.2015.03.020.
T.R. Cook, Y.R. Zheng and P.J. Stang, Chem. Rev., 113, 734 (2013); https://doi.org/10.1021/cr3002824.
D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas and M. Eddaoudi, J. Am. Chem. Soc., 137, 5421 (2015); https://doi.org/10.1021/jacs.5b00450.
R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata and H. Kitagawa, Nat. Mater., 9, 565 (2010); https://doi.org/10.1038/nmat2769.
A. Maleki, B. Hayati, M. Naghizadeh and S.W. Joo, J. Ind. Eng. Chem., 28, 211 (2015); https://doi.org/10.1016/j.jiec.2015.02.016.
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae and J.R. Long, Chem. Rev., 112, 724 (2012); https://doi.org/10.1021/cr2003272.
J.R. Li, R.J. Kuppler and H.C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); https://doi.org/10.1039/b802426j.
I. Luz, F.X. Llabrés i Xamena and A. Corma, J. Catal., 276, 134 (2010); https://doi.org/10.1016/j.jcat.2010.09.010.
S. Mendiratta, C.H. Lee, S.Y. Lee, Y.C. Kao, B.C. Chang, Y.H. Lo and K.L. Lu, Molecules, 20, 8941 (2015); https://doi.org/10.3390/molecules20058941.
J. An, S.J. Geib and N.L. Rosi, J. Am. Chem. Soc., 131, 8376 (2009); https://doi.org/10.1021/ja902972w.
X. Chen, Y. Tong, M.M. Han, K.L. Cao and Y.L. Feng, Inorg. Chem. Commun., 40, 62 (2014); https://doi.org/10.1016/j.inoche.2013.11.033.
Y. Song, X. Li, C. Wei, J. Fu, F. Xu, H. Tan, J. Tang and L. Wang, Sci. Rep., 5, 8401 (2015); https://doi.org/10.1038/srep08401.
J.P. Geng, Z.X. Wang, X. He, H.P. Xiao and M.X. Li, Inorg. Chem. Commun., 14, 997 (2011); https://doi.org/10.1016/j.inoche.2011.03.054.
Q. Huang, L. Diao, C. Zhang and F. Lei, Inorg. Chem. Commun., 14, 1889 (2011); https://doi.org/10.1016/j.inoche.2011.09.004.
S. Hu, P. Zhang, F.Y. Yu, M.X. Chen and D.R. Lin, Polyhedron, 67, 388 (2014); https://doi.org/10.1016/j.poly.2013.09.012.
B. Zheng, D. Zhang, Y. Peng, Q. Huo and Y. Liu, Inorg. Chem. Commun., 16, 70 (2012); https://doi.org/10.1016/j.inoche.2011.11.034.
W.J. Ji, Q.G. Zhai, S.N. Li, Y.C. Jiang and M.C. Hu, Inorg. Chem. Commun., 24, 209 (2012); https://doi.org/10.1016/j.inoche.2012.07.014.