Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surface Methodological Approach of Pleurotus florida Biowaste Towards Aspirin Drug
Corresponding Author(s) : S. Padmavathy
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Microbial bioremediation covers a wide range of recalcitrant degradation of pharmaceutical waste. The present study aims to inspect the dried, nonliving Pleurotus florida biowaste efficacy for bioremediation of aspirin in an ecofriendly manner. The equilibrium uptake of aspirin was investigated using batch experiments which were carried out as a function of contact time, initial concentration, pH and biomass dose. The optimal conditions for the highest percentage removal of aspirin was achieved at 2 h contact time, 100 mg/L of aspirin concentration, at pH 5 and 4.0 g/L biomass dose. The best fit was obtained by Langmuir isotherm model with high correlation coefficient (R2 = 0.989). The Pleurotus florida biowaste was characterized using Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analyzer and their interaction between the aspirin was illustrated with Fourier transform infrared spectroscopy and scanning electron microscope.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Epold, N. Dulova and M. Trapido, J. Eng. Eco. Sci., 1, 3 (2012); doi:10.7243/2050-1323-1-3.
- A. Pal, K.Y. Gin, A.Y. Lin and M. Reinhard, Sci. Total Environ., 408, 6062 (2010); doi:10.1016/j.scitotenv.2010.09.026.
- T. Heberer, Toxicol. Lett., 131, 5 (2002); doi:10.1016/S0378-4274(02)00041-3.
- M.J. Hilton, K.V. Thomas and D. Ashton, R&D Technical Report, P6-12/06/TR, UK Environment Agency, Bristol, UK (2003).
- C.F.F.H. Zwiener, Water Res., 34, 1881 (2000); doi:10.1016/S0043-1354(99)00338-3.
- K. Kummerer, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, Springer, edn 3, Chap. 1, pp. 3-21 (2008).
- K. Fent, A.A. Weston and D. Caminada, Aquat. Toxicol., 76, 122 (2006); doi:10.1016/j.aquatox.2005.09.009.
- J.D. Woodling, E.M. Lopez, T.A. Maldonado, D.O. Norris and A.M. Vajda, Comp. Biochem. Physiol. C, 144, 10 (2006); doi:10.1016/j.cbpc.2006.04.019.
- K.A. Kidd, P.J. Blanchfield, K.H. Mills, V.P. Palace, R.E. Evans, J.M. Lazorchak and R.W. Flick, Proc. Natl. Acad. Sci. USA, 104, 8897 (2007); doi:10.1073/pnas.0609568104.
- Y. Zhang, S. Geissen and C. Gal, Chemosphere, 73, 1151 (2008); doi:10.1016/j.chemosphere.2008.07.086.
- M. Basavaraju, S. Mahamood, H. Vittal and S. Shrihari, Int. J. Res. Chem. Environ., 1, 157 (2011).
- M. Cleuvers, Eco. Tox. Environ safe., 59, 309 (2004); doi:10.1016/S0147-6513(03)00141-6.
- L.J. Schulman, E.V. Sargent, B.D. Naumann, E.C. Faria, D.G. Dolan and J.P. Wargo, Hum. Ecol. Risk Assess., 8, 657 (2002); doi:10.1080/10807030290879899.
- T.D. Warner and J.A. Mitchell, Proc. Natl. Acad. Sci. USA, 99, 13371 (2002); doi:10.1073/pnas.222543099.
- T. Ternes, M. Bonerz and T. Schmidt, J. Chromatogr. A, 938, 175 (2001); doi:10.1016/S0021-9673(01)01205-5.
- V. Rakic, N. Rajic, A. Dakovic and A. Auroux, Micropor. Mesopor. Mater., 166, 185 (2013); doi:10.1016/j.micromeso.2012.04.049.
- K. Khamis, R. Karaman, F. Ayyash, A. Qtait, O. Deeb and A. Manssra, J. Environ. Sci. Eng., 5, 121 (2011).
- S. Pointing, Appl. Microbiol. Biotechnol., 57, 20 (2001); doi:10.1007/s002530100745.
- B.R. Kartheek, R. Maheswaran, G. Kumar and G.S. Banu, Int. J. Pharm. Biol. Arch., 2, 1401 (2011).
- A. Anastasi, V. Tigini and G.C. Varese, Soc. Biol., 32, 29 (2013); doi:10.1007/978-3-642-33811-3_2.
- M.X. Loukidou, K.A. Matis, A.I. Zouboulis and M. Liakopoulou-Kyriakidou, Water Res., 37, 4544 (2003); doi:10.1016/S0043-1354(03)00415-9.
- L. Migliore, A. Fiori, A. Spadoni and E. Galli, J. Hazard. Mater., 215-216, 227 (2012); doi:10.1016/j.jhazmat.2012.02.056.
- O.S. Isikhuemhen, G.O. Anoliefo and O.I. Oghale, Environ. Sci. Poll. Res., 10, 108 (2003); doi:10.1065/espr2002.04.114.
- S.M. Bowman and S. Free, BioEssays, 28, 799 (2006); doi:10.1002/bies.20441.
- A.Q.P. Elen, B.S. Cleide, A. Claudio and N. Oller, in ed.: A. Carpi, Analysis and Modeling to Technology Applications, INTECH (2011); ISBN: 978-953-307-268-5.
- J.B. Harborne, Phytochemical Methods, Chapman & Hall Ltd. London, p.11 (1973).
- A.T. Suhaimi, C.C. Tay and S.K. Liew, Int. J.Res. Chem. Environ, 2, 138 (2012).
- R.M. Gabr, S.M.F. Gad-Elrab, R.N.N. Abskharon, S.H.A. Hassan and A.A.M. Shoreit, World J. Microbiol. Biotechnol., 25, 1695 (2009); doi:10.1007/s11274-009-0063-x.
- Y. Liu, X. Chang, Y. Guo and A. Meng, J. Hazard. Mater., 135, 389 (2006); doi:10.1016/j.jhazmat.2005.11.078.
- T. Mathiyalagan, T. Viraraghavan and D.R. Cullimore, Water Qual. Res. J. Canada, 38, 499 (2003).
- S. Dahiya, R.M. Tripathi and A.G. Hegde, Bioresour. Technol., 99, 179 (2008); doi:10.1016/j.biortech.2006.11.011.
- M.L. Merroun, B.N. Omar, G.M.T. Mounoz and J.M. Arias, J. Appl. Microbiol., 84, 63 (1998); doi:10.1046/j.1365-2672.1997.00303.x.
- A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran, V. Stavila, S. Venkatachalam, M.G. Hahn, B.A. Simmons and S. Singh, Proc. Natl. Acad. Sci. USA, 111, 3587 (2014); doi:10.1073/pnas.1405685111.
- A.L. Mabuda, N.S. Mampweli and E.L. Meyer, J. Pollut. Eff. Cont, 1, 2 (2013).
- G.C. Ribeiro, L.M. Coelho, E. Oliveira and N.M.M. Coelho, BioResources, 8, 3309 (2013); doi:10.15376/biores.8.3.3309-3321.
- L. Ramrakhiani, R. Majumder and S. Khowala, Chem. Eng. J., 171, 1060 (2011); doi:10.1016/j.cej.2011.05.002.
References
I. Epold, N. Dulova and M. Trapido, J. Eng. Eco. Sci., 1, 3 (2012); doi:10.7243/2050-1323-1-3.
A. Pal, K.Y. Gin, A.Y. Lin and M. Reinhard, Sci. Total Environ., 408, 6062 (2010); doi:10.1016/j.scitotenv.2010.09.026.
T. Heberer, Toxicol. Lett., 131, 5 (2002); doi:10.1016/S0378-4274(02)00041-3.
M.J. Hilton, K.V. Thomas and D. Ashton, R&D Technical Report, P6-12/06/TR, UK Environment Agency, Bristol, UK (2003).
C.F.F.H. Zwiener, Water Res., 34, 1881 (2000); doi:10.1016/S0043-1354(99)00338-3.
K. Kummerer, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, Springer, edn 3, Chap. 1, pp. 3-21 (2008).
K. Fent, A.A. Weston and D. Caminada, Aquat. Toxicol., 76, 122 (2006); doi:10.1016/j.aquatox.2005.09.009.
J.D. Woodling, E.M. Lopez, T.A. Maldonado, D.O. Norris and A.M. Vajda, Comp. Biochem. Physiol. C, 144, 10 (2006); doi:10.1016/j.cbpc.2006.04.019.
K.A. Kidd, P.J. Blanchfield, K.H. Mills, V.P. Palace, R.E. Evans, J.M. Lazorchak and R.W. Flick, Proc. Natl. Acad. Sci. USA, 104, 8897 (2007); doi:10.1073/pnas.0609568104.
Y. Zhang, S. Geissen and C. Gal, Chemosphere, 73, 1151 (2008); doi:10.1016/j.chemosphere.2008.07.086.
M. Basavaraju, S. Mahamood, H. Vittal and S. Shrihari, Int. J. Res. Chem. Environ., 1, 157 (2011).
M. Cleuvers, Eco. Tox. Environ safe., 59, 309 (2004); doi:10.1016/S0147-6513(03)00141-6.
L.J. Schulman, E.V. Sargent, B.D. Naumann, E.C. Faria, D.G. Dolan and J.P. Wargo, Hum. Ecol. Risk Assess., 8, 657 (2002); doi:10.1080/10807030290879899.
T.D. Warner and J.A. Mitchell, Proc. Natl. Acad. Sci. USA, 99, 13371 (2002); doi:10.1073/pnas.222543099.
T. Ternes, M. Bonerz and T. Schmidt, J. Chromatogr. A, 938, 175 (2001); doi:10.1016/S0021-9673(01)01205-5.
V. Rakic, N. Rajic, A. Dakovic and A. Auroux, Micropor. Mesopor. Mater., 166, 185 (2013); doi:10.1016/j.micromeso.2012.04.049.
K. Khamis, R. Karaman, F. Ayyash, A. Qtait, O. Deeb and A. Manssra, J. Environ. Sci. Eng., 5, 121 (2011).
S. Pointing, Appl. Microbiol. Biotechnol., 57, 20 (2001); doi:10.1007/s002530100745.
B.R. Kartheek, R. Maheswaran, G. Kumar and G.S. Banu, Int. J. Pharm. Biol. Arch., 2, 1401 (2011).
A. Anastasi, V. Tigini and G.C. Varese, Soc. Biol., 32, 29 (2013); doi:10.1007/978-3-642-33811-3_2.
M.X. Loukidou, K.A. Matis, A.I. Zouboulis and M. Liakopoulou-Kyriakidou, Water Res., 37, 4544 (2003); doi:10.1016/S0043-1354(03)00415-9.
L. Migliore, A. Fiori, A. Spadoni and E. Galli, J. Hazard. Mater., 215-216, 227 (2012); doi:10.1016/j.jhazmat.2012.02.056.
O.S. Isikhuemhen, G.O. Anoliefo and O.I. Oghale, Environ. Sci. Poll. Res., 10, 108 (2003); doi:10.1065/espr2002.04.114.
S.M. Bowman and S. Free, BioEssays, 28, 799 (2006); doi:10.1002/bies.20441.
A.Q.P. Elen, B.S. Cleide, A. Claudio and N. Oller, in ed.: A. Carpi, Analysis and Modeling to Technology Applications, INTECH (2011); ISBN: 978-953-307-268-5.
J.B. Harborne, Phytochemical Methods, Chapman & Hall Ltd. London, p.11 (1973).
A.T. Suhaimi, C.C. Tay and S.K. Liew, Int. J.Res. Chem. Environ, 2, 138 (2012).
R.M. Gabr, S.M.F. Gad-Elrab, R.N.N. Abskharon, S.H.A. Hassan and A.A.M. Shoreit, World J. Microbiol. Biotechnol., 25, 1695 (2009); doi:10.1007/s11274-009-0063-x.
Y. Liu, X. Chang, Y. Guo and A. Meng, J. Hazard. Mater., 135, 389 (2006); doi:10.1016/j.jhazmat.2005.11.078.
T. Mathiyalagan, T. Viraraghavan and D.R. Cullimore, Water Qual. Res. J. Canada, 38, 499 (2003).
S. Dahiya, R.M. Tripathi and A.G. Hegde, Bioresour. Technol., 99, 179 (2008); doi:10.1016/j.biortech.2006.11.011.
M.L. Merroun, B.N. Omar, G.M.T. Mounoz and J.M. Arias, J. Appl. Microbiol., 84, 63 (1998); doi:10.1046/j.1365-2672.1997.00303.x.
A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran, V. Stavila, S. Venkatachalam, M.G. Hahn, B.A. Simmons and S. Singh, Proc. Natl. Acad. Sci. USA, 111, 3587 (2014); doi:10.1073/pnas.1405685111.
A.L. Mabuda, N.S. Mampweli and E.L. Meyer, J. Pollut. Eff. Cont, 1, 2 (2013).
G.C. Ribeiro, L.M. Coelho, E. Oliveira and N.M.M. Coelho, BioResources, 8, 3309 (2013); doi:10.15376/biores.8.3.3309-3321.
L. Ramrakhiani, R. Majumder and S. Khowala, Chem. Eng. J., 171, 1060 (2011); doi:10.1016/j.cej.2011.05.002.