Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Activation Energy Parameters for Hydrodynamic Permeability of Divalent Transition Metal Sulphates and Magnesium Sulphate in Binary Aqueous Mixtures of Ethylene Glycol
Corresponding Author(s) : Ramesh Thakur
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Due to the stable nature and applications of inorganic membranes, an aluminium oxide membrane has been used for the determination of hydrodynamic permeabilities of some divalent transition metal sulphates e.g., manganese sulphate, cobalt sulphate, nickel sulphate, copper sulphate, zinc sulphate and magnesium sulphate in binary aqueous mixtures of ethylene glycol. Activation parameters of manganese sulphate, cobalt sulphate, nickel sulphate, copper sulphate, zinc sulphate and magnesium sulphate in 5 % (w/w) binary aqueous mixtures of ethylene glycol have been determined at different temperature (298.15, 303.15, 308.15, 313.15 and 318.15 K). Filtration coefficients (LP) as a function of hydrodynamic pressure and the concentration of the solute are also determined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal and J. Lyklema, J. Colloid Interf. Sci., 309, 194 (2007); doi:10.1016/j.jcis.2006.12.075.
- R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, London (1981).
- R.P. Rastogi, Introduction to Non-Equilibrium Physical Chemistry, edn 1, Elsevier (2008).
- N. Lakshminarayanaiah, Chem. Rev., 65, 491 (1965); doi:10.1021/cr60237a001.
- N. Lakshminarayanaiah, Transport Phenomena in Membranes; Academic Press Inc: New York (1969).
- K.S. Spiegler, Trans. Farady Soc., 54, 1408 (1958); doi:10.1039/tf9585401408.
- R.L. Blokhra, S.K. Agarwal and N. Arora, J. Colloid Interf. Sci., 73, 88 (1980); doi:10.1016/0021-9797(80)90125-3.
- R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 5, 205 (1980); doi:10.1515/jnet.1980.5.4.205.
- R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 6, 311 (1981).
- R.L. Blokhra and S. Kohli, Electroanal. Chem., 124, 285 (1981); doi:10.1016/S0022-0728(81)80305-1.
- N. Lakshminarayanaiah, J. Phys. Chem., 74, 2385 (1970); doi:10.1021/j100705a026.
- S. Glstone, K.J. Laidler and H. Eyring, Theory of Rate Processes; McGraw Hill: New York (1941).
- R.M. Barrer, Diffusion in and through Solids; Cambridge University Press: Cambridge (1951).
References
A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal and J. Lyklema, J. Colloid Interf. Sci., 309, 194 (2007); doi:10.1016/j.jcis.2006.12.075.
R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, London (1981).
R.P. Rastogi, Introduction to Non-Equilibrium Physical Chemistry, edn 1, Elsevier (2008).
N. Lakshminarayanaiah, Chem. Rev., 65, 491 (1965); doi:10.1021/cr60237a001.
N. Lakshminarayanaiah, Transport Phenomena in Membranes; Academic Press Inc: New York (1969).
K.S. Spiegler, Trans. Farady Soc., 54, 1408 (1958); doi:10.1039/tf9585401408.
R.L. Blokhra, S.K. Agarwal and N. Arora, J. Colloid Interf. Sci., 73, 88 (1980); doi:10.1016/0021-9797(80)90125-3.
R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 5, 205 (1980); doi:10.1515/jnet.1980.5.4.205.
R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 6, 311 (1981).
R.L. Blokhra and S. Kohli, Electroanal. Chem., 124, 285 (1981); doi:10.1016/S0022-0728(81)80305-1.
N. Lakshminarayanaiah, J. Phys. Chem., 74, 2385 (1970); doi:10.1021/j100705a026.
S. Glstone, K.J. Laidler and H. Eyring, Theory of Rate Processes; McGraw Hill: New York (1941).
R.M. Barrer, Diffusion in and through Solids; Cambridge University Press: Cambridge (1951).