Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Binding Chitosan Cross-Linked with Dimethylol dihydroxyethylene Urea onto Nylon 66 Fibres for Burn Scar Management
Corresponding Author(s) : Nilufer Yildiz Varan
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Chitosan is an excellent biopolymer having antimicrobial activities against various bacteria and fungi. The research aims to improve the healing characteristics and to increase the effectiveness and functions of compression fabrics used in burn scar treatments by providing infection protection with chitosan barriers. Chitosan is cross-linked with dimethylol dihydroxyethylene urea then binds onto nylon 66 fabric to progress pressure garments with permanent antimicrobial activity. The obtained nylon 66 fabric in powernet structure is analyzed via total reflection infrared spectroscopy and scanning electron microscopy. Finally, antimicrobial and washing tests are performed. The results show that chitosan cross-linked with dimethylol dihydroxyethylene urea onto nylon 66 fibre is feasible and the fibres bind with chitosan are shown to be antimicrobial. The maximum binding level is 0.56 wt % and the antimicrobial effectiveness of the fabric remains at around 90 % after 5 washes and 50 % after 30 washes, which will provide a long period of protection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Chandy and C.P. Sharma, Biomater. Artif. Cells Artif. Organs, 18, 1 (1990); doi:10.3109/10731199009117286.
- W. Paul and C.P. Sharma, STP Pharma Sci., 10, 5 (2000).
- R.A.A. Muzzarelli and C. Muzzarelli, Adv. Polym. Sci., 186, 151 (2005); doi:10.1007/b136820.
- S.M. Hudson and C. Smith, Polysaccharide: Chitin and Chitosan Chemistry and Technology of Their Use as Structural Materials. In: Biopolymers from Renewable Resources, pp. 96-118 (1998).
- G.A.F. Roberts, Chitin Chemistry; Macmillan Press Ltd., London (1992).
- I.R. Jayakumar, M. Prabaharan and R.A.A. Muzarelli, Chitosan for Biomaterials I, Advances in Polymer Science (Book 243), Springer-Verlag: Berlin, Heidelberg (2011).
- N.R. Sudardshan, D.G. Hoover and D. Knorr, Food Biotechnol., 6, 257 (1992); doi:10.1080/08905439209549838.
- S.H. Lim and S.M. Hudson, J. Macromol. Sci. Part C Polym. Rev., C43, 223 (2003); doi:10.1081/MC-120020161.
- R. Jayakumar, N. Nwe, S. Tokura and H. Tamura, Int. J. Biol. Macromol., 40, 175 (2007); doi:10.1016/j.ijbiomac.2006.06.021.
- M. Rinaudo, Polym. Int., 57, 397 (2008); doi:10.1002/pi.2378.
- V.K. Mourya and N.N. Inamdar, React. Funct. Polym., 68, 1013 (2008); doi:10.1016/j.reactfunctpolym.2008.03.002.
- K. Kurita, Mar. Biotechnol., 8, 203 (2006); doi:10.1007/s10126-005-0097-5.
- S. Hirano, Polym. Int., 48, 732 (1999); doi:10.1002/(SICI)1097-0126(199908)48:8<732::AID-PI211>3.0.CO;2-U.
- H. Yi, L.Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver and G.F. Payne, Biomacromolecules, 6, 2881 (2005); doi:10.1021/bm050410l.
- Y.N. Varan, C.N. Gursoy, W.M. King, J.P. Hauser and D.J. Krauss, The Effects of Silver Antimicrobials on the Rehabilitation Performance of Burn Pressure Garments, Proceedings of American Association of Textile Chemists and Colorists International Conference, pp. 205-218 (2012).
- Y.N. Varan, W.M. King and J.P. Hauser, Rehabilitation Performance Studies of Burn Pressure Garments with Antimicrobial Triclosan Chemical Agents, Proceedings of American Association of Textile Chemists and Colorists International Conference, pp. 239-252 (2013).
- Y.N. Varan, C.N. Gursoy, W.M. King, J.P. Hauser and D.J. Krauss, The Effects of QAC Antimicrobials on the Rehabilitation Performance of Burn Pressure Garments; Proceedings of International Congress of Innovation Textiles, pp. 485-496 (2011).
- Y.N. Varan and W.M. King, J. Donghua Univ., 5, 410 (2013).
- H. Yang, C.Q. Yang and Q. He, Polym. Degrad. Stab., 94, 1023 (2009); doi:10.1016/j.polymdegradstab.2009.02.008.
- Y. Ma, T. Zhou and C. Zhao, Carbohydr. Res., 343, 230 (2008); doi:10.1016/j.carres.2007.11.006.
- Y.J. Han, K.H. Wang, J.Y. Lai and Y.L. Liu, J. Membr. Sci., 463, 17 (2014); doi:10.1016/j.memsci.2014.03.052.
- P. Glampedaki, D. Jocic and M.M.C.G. Warmoeskerken, Prog. Org. Coat., 72, 562 (2011); doi:10.1016/j.porgcoat.2011.06.019.
- Z. Shi, J. Polym. Res., 21, 1 (2014); doi:10.1007/s10965-014-0534-0.
- H.J. Tseng, S.H. Hsu, M.W. Wu, T.H. Hsueh and P.C. Tu, Fibres and Polymers, 10, 53 (2009); doi:10.1007/s12221-009-0053-5.
References
T. Chandy and C.P. Sharma, Biomater. Artif. Cells Artif. Organs, 18, 1 (1990); doi:10.3109/10731199009117286.
W. Paul and C.P. Sharma, STP Pharma Sci., 10, 5 (2000).
R.A.A. Muzzarelli and C. Muzzarelli, Adv. Polym. Sci., 186, 151 (2005); doi:10.1007/b136820.
S.M. Hudson and C. Smith, Polysaccharide: Chitin and Chitosan Chemistry and Technology of Their Use as Structural Materials. In: Biopolymers from Renewable Resources, pp. 96-118 (1998).
G.A.F. Roberts, Chitin Chemistry; Macmillan Press Ltd., London (1992).
I.R. Jayakumar, M. Prabaharan and R.A.A. Muzarelli, Chitosan for Biomaterials I, Advances in Polymer Science (Book 243), Springer-Verlag: Berlin, Heidelberg (2011).
N.R. Sudardshan, D.G. Hoover and D. Knorr, Food Biotechnol., 6, 257 (1992); doi:10.1080/08905439209549838.
S.H. Lim and S.M. Hudson, J. Macromol. Sci. Part C Polym. Rev., C43, 223 (2003); doi:10.1081/MC-120020161.
R. Jayakumar, N. Nwe, S. Tokura and H. Tamura, Int. J. Biol. Macromol., 40, 175 (2007); doi:10.1016/j.ijbiomac.2006.06.021.
M. Rinaudo, Polym. Int., 57, 397 (2008); doi:10.1002/pi.2378.
V.K. Mourya and N.N. Inamdar, React. Funct. Polym., 68, 1013 (2008); doi:10.1016/j.reactfunctpolym.2008.03.002.
K. Kurita, Mar. Biotechnol., 8, 203 (2006); doi:10.1007/s10126-005-0097-5.
S. Hirano, Polym. Int., 48, 732 (1999); doi:10.1002/(SICI)1097-0126(199908)48:8<732::AID-PI211>3.0.CO;2-U.
H. Yi, L.Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver and G.F. Payne, Biomacromolecules, 6, 2881 (2005); doi:10.1021/bm050410l.
Y.N. Varan, C.N. Gursoy, W.M. King, J.P. Hauser and D.J. Krauss, The Effects of Silver Antimicrobials on the Rehabilitation Performance of Burn Pressure Garments, Proceedings of American Association of Textile Chemists and Colorists International Conference, pp. 205-218 (2012).
Y.N. Varan, W.M. King and J.P. Hauser, Rehabilitation Performance Studies of Burn Pressure Garments with Antimicrobial Triclosan Chemical Agents, Proceedings of American Association of Textile Chemists and Colorists International Conference, pp. 239-252 (2013).
Y.N. Varan, C.N. Gursoy, W.M. King, J.P. Hauser and D.J. Krauss, The Effects of QAC Antimicrobials on the Rehabilitation Performance of Burn Pressure Garments; Proceedings of International Congress of Innovation Textiles, pp. 485-496 (2011).
Y.N. Varan and W.M. King, J. Donghua Univ., 5, 410 (2013).
H. Yang, C.Q. Yang and Q. He, Polym. Degrad. Stab., 94, 1023 (2009); doi:10.1016/j.polymdegradstab.2009.02.008.
Y. Ma, T. Zhou and C. Zhao, Carbohydr. Res., 343, 230 (2008); doi:10.1016/j.carres.2007.11.006.
Y.J. Han, K.H. Wang, J.Y. Lai and Y.L. Liu, J. Membr. Sci., 463, 17 (2014); doi:10.1016/j.memsci.2014.03.052.
P. Glampedaki, D. Jocic and M.M.C.G. Warmoeskerken, Prog. Org. Coat., 72, 562 (2011); doi:10.1016/j.porgcoat.2011.06.019.
Z. Shi, J. Polym. Res., 21, 1 (2014); doi:10.1007/s10965-014-0534-0.
H.J. Tseng, S.H. Hsu, M.W. Wu, T.H. Hsueh and P.C. Tu, Fibres and Polymers, 10, 53 (2009); doi:10.1007/s12221-009-0053-5.