Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Correlation Between Boiling Temperature and Viscosity Arrhenius Activation Energy in N,N-Dimethylformamide + 2-Propanol Mixtures at 303.15 to 323.15 K
Corresponding Author(s) : N.A. Al-Omair
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Excess properties determined from literature of experimental density and viscosity values in N,N-dimethylformamide + 2-propanol mixtures over the temperature range from 303.15 to 323.15 K can conduct to test some correlation equations as well as their corresponding derivative properties. Investigation on the enthalpy of activation of viscous flow (ΔH*) and the Arrhenius activation energy (Ea) shows very close values. Here we can define new thermodynamic functions such as the molar partial activation energies Ea1 and Ea2 for N,N-dimethylformamide and 2-propanol, respectively and which can reveal their individual contribution separately. Causal correlation between the two viscosity Arrhenius parameters in the whole compositions range shows existence of distinct interaction behaviours delimited by particular compositions in N,N-dimethylformamide. The correlation between viscosity Arrhenius parameters shows the interesting new concept of Arrhenius temperature which is closely in relation to the temperature of vapourization in the vapour-liquid equilibrium and the limiting corresponding partial molar thermodynamic functions can permit to predict reliable values of the boiling temperature of pure liquid components.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M.H. Bhuiyan and M.H. Uddin, J. Mol. Liq., 138, 139 (2008); doi:10.1016/j.molliq.2007.07.006.
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Wiley Interscience, New York, edn 4 (1986).
- A. Laesecke, J. Mol. Liq., 145, 51 (2009); doi:10.1016/j.molliq.2008.12.003.
- C. Yang, Y. Sun, Y. He and P. Ma, J. Chem. Eng. Data, 53, 293 (2008); doi:10.1021/je700430g.
- M.H. Uddin, M.Z.H. Khan, M.H. Rahman, M.A. Shahriar and M. Abdullah-Al-Mashud, Phys. Chem. Liq., 52, 251 (2014); doi:10.1080/00319104.2013.812021.
- C.M.N. Kinart, Phys. Chem. Liq., 27, 115 (1994); doi:10.1080/00319109408029516.
- R.K. Das and M.N. Roy, Phys. Chem. Liq., 52, 55 (2014); doi:10.1080/00319104.2010.542548.
- B. Zhang, Y. Cai, X.L. Mou, N. Lou and X. Wang, Chem. Phys., 280, 229 (2002); doi:10.1016/S0301-0104(02)00560-8.
- J.B. Rabor, T. Yoshidome, T. Mitsushio, K. Yoshida, B.J. Sarno and M. Higo, Int. Res. J. Pure Appl. Chem., 3, 159 (2013); doi:10.9734/IRJPAC/2013/3442.
- Z. Zhang, L. Yang, Y. Xing and W. Li, J. Chem. Eng. Data, 58, 357 (2013); doi:10.1021/je300994y.
- J. Zielkiewicz, J. Chem. Thermodyn., 27, 415 (1995); doi:10.1006/jcht.1995.0041.
- P. Sivagurunathan, K. Ramachandran and K. Dharmalingam, Main Group Chem., 5, 89 (2006); doi:10.1080/10241220600923884.
- J.P. Chao, M. Dai and Y.X. Wang, J. Chem. Thermodyn., 21, 1169 (1989); doi:10.1016/0021-9614(89)90103-1.
- M. Stockhausen and H. Busch, Phys. Chem. Liq., 32, 183 (1996); doi:10.1080/00319109608030721.
- M. Hichri, D. Das, A. Messaâdi, E.S.B.H. Hmida, N. Ouerfelli and I. Khattech, Phys. Chem. Liq., 51, 721 (2013); doi:10.1080/00319104.2013.802210.
- D. Das, A. Messaâdi, N. Dhouibi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq. Phys. Chem. Liq., 51, 677 (2013); doi:10.1080/00319104.2013.777960.
- N. Ouerfelli, Z. Barhoumi and O. Iulian, J. Solution Chem., 41, 458 (2012); doi:10.1007/s10953-012-9812-9.
- D. Das and N. Ouerfelli, J. Solution Chem., 41, 1334 (2012); doi:10.1007/s10953-012-9878-4.
- D. Das, A. Messaâdi, Z. Barhoumi and N. Ouerfelli, J. Solution Chem., 41, 1555 (2012); doi:10.1007/s10953-012-9888-2.
- D. Das, Z. Barhoumi and N. Ouerfelli, Phys. Chem. Liq., 50, 346 (2012); doi:10.1080/00319104.2011.646516.
- D. Das, Z. Barhoumi, N. Dhouibi, M.A.M.K. Sanhoury and N. Ouerfelli, Phys. Chem. Liq., 50, 712 (2012); doi:10.1080/00319104.2012.713553.
- D. Das, A. Messaâdi, N. Dhouibi and N. Ouerfelli, Phys. Chem. Liq., 50, 773 (2012); doi:10.1080/00319104.2012.717893.
- M. Singh, J. Biochem. Biophys. Methods, 67, 151 (2006); doi:10.1016/j.jbbm.2006.02.008.
- A. Chandra, V. Patidar, M. Singh and R.K. Kale, J. Chem. Thermodyn., 65, 18 (2013); doi:10.1016/j.jct.2013.05.037.
- M. Singh, V. Kumar and R.K. Kale, Int. J. Therm., 14, 87 (2011).
- R.K. Ameta, M. Singh and R.K. Kale, New J. Chem., 37, 1501 (2013); doi:10.1039/c3nj41141a.
- M. Singh, V. Kumar, J.S. Patel and R.K. Kale, Int. J. Therm., 14, 135 (2011).
- M. Singh, R.K. Ameta, B.S. Kitawat and R.K. Kale, J. Mater. Sci. Chem. Eng., 2, 43 (2014).
- S. Singhal, Int. J. Chem. Tech. Appl., 2, 152 (2013).
- N. Ouerfelli, A. Messaadi, E.B.H. H’mida, E. Cherif and N. Amdouni, Phys. Chem. Liq., 49, 655 (2011); doi:10.1080/00319104.2010.517204.
- O. Iulian and O. Ciocirlan, Roum. Chim., 55, 45 (2010).
- J.V. Herraez, R. Belda, O. Diez and M. Herráez, J. Solution Chem., 37, 233 (2008); doi:10.1007/s10953-007-9226-2.
- N. Ouerfelli, M. Bouaziz and J.V. Herráez, Phys. Chem. Liq., 51, 55 (2013); doi:10.1080/00319104.2012.682260.
- N. Ouerfelli, T. Kouissi, N. Zrelli and M. Bouanz, J. Solution Chem., 38, 983 (2009); doi:10.1007/s10953-009-9423-2.
- E. Cherif, N. Ouerfelli and M. Bouaziz, Phys. Chem. Liq., 49, 155 (2011); doi:10.1080/00319100903074593.
- N. Ouerfelli, T. Kouissi and O. Iulian, J. Solution Chem., 39, 57 (2010); doi:10.1007/s10953-009-9484-2.
- N. Ouerfelli, O. Iulian and M. Bouaziz, Phys. Chem. Liq., 48, 488 (2010); doi:10.1080/00319100903131559.
- N. Ouerfelli, Z. Barhoumi, R. Besbes and N. Amdouni, Phys. Chem. Liq., 49, 777 (2011); doi:10.1080/00319104.2010.521927.
- Z. Trabelsi, M. Dallel, H. Salhi, D. Das, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 53, 529 (2015); doi:10.1080/00319104.2014.947372.
- A. Messaâdi, H. Salhi, D. Das, N.O. Alzamil, M.A. Alkhaldi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 506 (2015); doi:10.1080/00319104.2015.1007980.
- D. Das, H. Salhi, M. Dallel, Z. Trabelsi, A.A. Al-Arfaj and N. Ouerfelli, J. Solution Chem., 44, 54 (2015); doi:10.1007/s10953-014-0289-6.
- N. Dhouibi, M. Dallel, D. Das, M. Bouaziz, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 275 (2015); doi:10.1080/00319104.2014.972552.
- H. Salhi, M. Dallel, Z. Trabelsi, N.O. Alzamil, M.A. Alkhaldi and N. Ouerfelli, Phys. Chem. Liq., 53, 117 (2015); doi:10.1080/00319104.2014.956170.
- M. Dallel, D. Das, E.S. Bel Hadj Hmida, N.A. Al-Omair, A.A. Al-Arfaj and N. Ouerfelli, Phys. Chem. Liq., 52, 442 (2014); doi:10.1080/00319104.2013.871669.
- N.A. Al-Omair, D. Das, L. Snoussi, B. Sinha, R. Pradhan, K. Acharjee, K. Saoudi and N. Ouerfelli, Phys. Chem. Liq., doi:10.1080/00319104.2016.1139707.
- H.C. Longuet-Higgins, Proc. R. Soc. Lond., 205, 247 (1951); doi:10.1098/rspa.1951.0028.
- N. Matsubayashi and M. Nakahara, J. Chem. Phys., 94, 653 (1991); doi:10.1063/1.460331.
- T. Nakagawa, J. Mol. Liq., 63, 303 (1995); doi:10.1016/0167-7322(94)00792-U.
- M.E. de Ruiz Holgado, C.R. de Schaefer and E.L. Arancibia, J. Mol. Liq., 79, 257 (1999); doi:10.1016/S0167-7322(99)00009-4.
- H. Falkenhagen, Theorie der Elektrolyte, Hirzel: Leipiz (1971).
- H. Eyring and M.S. John, Significant Liquid Structure, Wiley: New York (1969).
- A. Ali, A.K. Nain and S. Hyder, J. Indian Chem. Soc., 75, 501 (1998).
- D.G. Leaist, K. MacEwan, A. Stefan and M. Zamari, J. Chem. Eng. Data, 45, 815 (2000); doi:10.1021/je000079n.
- R. Besbes, N. Ouerfelli and M. Abderabba, Mediterr. J. Chem., 1, 289 (2012); doi:10.13171/mjc.1.6.2012.05.06.12.
- R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); doi:10.1016/j.fluid.2014.09.023.
- R.B. Haj-Kacem, N. Ouerfelli and J.V. Herráez, Phys. Chem. Liq., 53, 776 (2015); doi:10.1080/00319104.2015.1048248.
- A. Messaadi, N. Dhouibi, H. Hamda, F.B.M. Belgacem, Y.H. Adbelkader, N. Ouerfelli and A. H. Hamzaoui, J. Chem., Article ID 163262 (2015); doi:10.1155/2015/163262.
References
M.M.H. Bhuiyan and M.H. Uddin, J. Mol. Liq., 138, 139 (2008); doi:10.1016/j.molliq.2007.07.006.
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Wiley Interscience, New York, edn 4 (1986).
A. Laesecke, J. Mol. Liq., 145, 51 (2009); doi:10.1016/j.molliq.2008.12.003.
C. Yang, Y. Sun, Y. He and P. Ma, J. Chem. Eng. Data, 53, 293 (2008); doi:10.1021/je700430g.
M.H. Uddin, M.Z.H. Khan, M.H. Rahman, M.A. Shahriar and M. Abdullah-Al-Mashud, Phys. Chem. Liq., 52, 251 (2014); doi:10.1080/00319104.2013.812021.
C.M.N. Kinart, Phys. Chem. Liq., 27, 115 (1994); doi:10.1080/00319109408029516.
R.K. Das and M.N. Roy, Phys. Chem. Liq., 52, 55 (2014); doi:10.1080/00319104.2010.542548.
B. Zhang, Y. Cai, X.L. Mou, N. Lou and X. Wang, Chem. Phys., 280, 229 (2002); doi:10.1016/S0301-0104(02)00560-8.
J.B. Rabor, T. Yoshidome, T. Mitsushio, K. Yoshida, B.J. Sarno and M. Higo, Int. Res. J. Pure Appl. Chem., 3, 159 (2013); doi:10.9734/IRJPAC/2013/3442.
Z. Zhang, L. Yang, Y. Xing and W. Li, J. Chem. Eng. Data, 58, 357 (2013); doi:10.1021/je300994y.
J. Zielkiewicz, J. Chem. Thermodyn., 27, 415 (1995); doi:10.1006/jcht.1995.0041.
P. Sivagurunathan, K. Ramachandran and K. Dharmalingam, Main Group Chem., 5, 89 (2006); doi:10.1080/10241220600923884.
J.P. Chao, M. Dai and Y.X. Wang, J. Chem. Thermodyn., 21, 1169 (1989); doi:10.1016/0021-9614(89)90103-1.
M. Stockhausen and H. Busch, Phys. Chem. Liq., 32, 183 (1996); doi:10.1080/00319109608030721.
M. Hichri, D. Das, A. Messaâdi, E.S.B.H. Hmida, N. Ouerfelli and I. Khattech, Phys. Chem. Liq., 51, 721 (2013); doi:10.1080/00319104.2013.802210.
D. Das, A. Messaâdi, N. Dhouibi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq. Phys. Chem. Liq., 51, 677 (2013); doi:10.1080/00319104.2013.777960.
N. Ouerfelli, Z. Barhoumi and O. Iulian, J. Solution Chem., 41, 458 (2012); doi:10.1007/s10953-012-9812-9.
D. Das and N. Ouerfelli, J. Solution Chem., 41, 1334 (2012); doi:10.1007/s10953-012-9878-4.
D. Das, A. Messaâdi, Z. Barhoumi and N. Ouerfelli, J. Solution Chem., 41, 1555 (2012); doi:10.1007/s10953-012-9888-2.
D. Das, Z. Barhoumi and N. Ouerfelli, Phys. Chem. Liq., 50, 346 (2012); doi:10.1080/00319104.2011.646516.
D. Das, Z. Barhoumi, N. Dhouibi, M.A.M.K. Sanhoury and N. Ouerfelli, Phys. Chem. Liq., 50, 712 (2012); doi:10.1080/00319104.2012.713553.
D. Das, A. Messaâdi, N. Dhouibi and N. Ouerfelli, Phys. Chem. Liq., 50, 773 (2012); doi:10.1080/00319104.2012.717893.
M. Singh, J. Biochem. Biophys. Methods, 67, 151 (2006); doi:10.1016/j.jbbm.2006.02.008.
A. Chandra, V. Patidar, M. Singh and R.K. Kale, J. Chem. Thermodyn., 65, 18 (2013); doi:10.1016/j.jct.2013.05.037.
M. Singh, V. Kumar and R.K. Kale, Int. J. Therm., 14, 87 (2011).
R.K. Ameta, M. Singh and R.K. Kale, New J. Chem., 37, 1501 (2013); doi:10.1039/c3nj41141a.
M. Singh, V. Kumar, J.S. Patel and R.K. Kale, Int. J. Therm., 14, 135 (2011).
M. Singh, R.K. Ameta, B.S. Kitawat and R.K. Kale, J. Mater. Sci. Chem. Eng., 2, 43 (2014).
S. Singhal, Int. J. Chem. Tech. Appl., 2, 152 (2013).
N. Ouerfelli, A. Messaadi, E.B.H. H’mida, E. Cherif and N. Amdouni, Phys. Chem. Liq., 49, 655 (2011); doi:10.1080/00319104.2010.517204.
O. Iulian and O. Ciocirlan, Roum. Chim., 55, 45 (2010).
J.V. Herraez, R. Belda, O. Diez and M. Herráez, J. Solution Chem., 37, 233 (2008); doi:10.1007/s10953-007-9226-2.
N. Ouerfelli, M. Bouaziz and J.V. Herráez, Phys. Chem. Liq., 51, 55 (2013); doi:10.1080/00319104.2012.682260.
N. Ouerfelli, T. Kouissi, N. Zrelli and M. Bouanz, J. Solution Chem., 38, 983 (2009); doi:10.1007/s10953-009-9423-2.
E. Cherif, N. Ouerfelli and M. Bouaziz, Phys. Chem. Liq., 49, 155 (2011); doi:10.1080/00319100903074593.
N. Ouerfelli, T. Kouissi and O. Iulian, J. Solution Chem., 39, 57 (2010); doi:10.1007/s10953-009-9484-2.
N. Ouerfelli, O. Iulian and M. Bouaziz, Phys. Chem. Liq., 48, 488 (2010); doi:10.1080/00319100903131559.
N. Ouerfelli, Z. Barhoumi, R. Besbes and N. Amdouni, Phys. Chem. Liq., 49, 777 (2011); doi:10.1080/00319104.2010.521927.
Z. Trabelsi, M. Dallel, H. Salhi, D. Das, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 53, 529 (2015); doi:10.1080/00319104.2014.947372.
A. Messaâdi, H. Salhi, D. Das, N.O. Alzamil, M.A. Alkhaldi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 506 (2015); doi:10.1080/00319104.2015.1007980.
D. Das, H. Salhi, M. Dallel, Z. Trabelsi, A.A. Al-Arfaj and N. Ouerfelli, J. Solution Chem., 44, 54 (2015); doi:10.1007/s10953-014-0289-6.
N. Dhouibi, M. Dallel, D. Das, M. Bouaziz, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 275 (2015); doi:10.1080/00319104.2014.972552.
H. Salhi, M. Dallel, Z. Trabelsi, N.O. Alzamil, M.A. Alkhaldi and N. Ouerfelli, Phys. Chem. Liq., 53, 117 (2015); doi:10.1080/00319104.2014.956170.
M. Dallel, D. Das, E.S. Bel Hadj Hmida, N.A. Al-Omair, A.A. Al-Arfaj and N. Ouerfelli, Phys. Chem. Liq., 52, 442 (2014); doi:10.1080/00319104.2013.871669.
N.A. Al-Omair, D. Das, L. Snoussi, B. Sinha, R. Pradhan, K. Acharjee, K. Saoudi and N. Ouerfelli, Phys. Chem. Liq., doi:10.1080/00319104.2016.1139707.
H.C. Longuet-Higgins, Proc. R. Soc. Lond., 205, 247 (1951); doi:10.1098/rspa.1951.0028.
N. Matsubayashi and M. Nakahara, J. Chem. Phys., 94, 653 (1991); doi:10.1063/1.460331.
T. Nakagawa, J. Mol. Liq., 63, 303 (1995); doi:10.1016/0167-7322(94)00792-U.
M.E. de Ruiz Holgado, C.R. de Schaefer and E.L. Arancibia, J. Mol. Liq., 79, 257 (1999); doi:10.1016/S0167-7322(99)00009-4.
H. Falkenhagen, Theorie der Elektrolyte, Hirzel: Leipiz (1971).
H. Eyring and M.S. John, Significant Liquid Structure, Wiley: New York (1969).
A. Ali, A.K. Nain and S. Hyder, J. Indian Chem. Soc., 75, 501 (1998).
D.G. Leaist, K. MacEwan, A. Stefan and M. Zamari, J. Chem. Eng. Data, 45, 815 (2000); doi:10.1021/je000079n.
R. Besbes, N. Ouerfelli and M. Abderabba, Mediterr. J. Chem., 1, 289 (2012); doi:10.13171/mjc.1.6.2012.05.06.12.
R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); doi:10.1016/j.fluid.2014.09.023.
R.B. Haj-Kacem, N. Ouerfelli and J.V. Herráez, Phys. Chem. Liq., 53, 776 (2015); doi:10.1080/00319104.2015.1048248.
A. Messaadi, N. Dhouibi, H. Hamda, F.B.M. Belgacem, Y.H. Adbelkader, N. Ouerfelli and A. H. Hamzaoui, J. Chem., Article ID 163262 (2015); doi:10.1155/2015/163262.