Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on Thermal, Microbial Behaviours of Copoly(azo-maleimide-Acrylic Acid/Vinyl Acetate) and Terpoly(azo-maleimide-acrylic acid-vinyl acetate): Synthesis and Characterization
Corresponding Author(s) : Suman Jinger
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
A terpolymer based on polymerizable monomer unit of N-substituted maleimide associated with azo moiety as a pendent group, acrylic acid and vinyl acetate was chemically architected. The preparation of terpolymer was accelerated by free radical polymerization using AIBN initiator at 70 ± 2 °C in THF solvent. Copolymers of maleimide with acrylic acid/vinyl acetate have also been synthesized, characterized and results were comparatively analyzed with terpolymer. The thermal properties of terpolymer and copolymers such as glass transition temperature (Tg) and thermal decomposition were determined by DSC and TGA analysis respectively. The weight molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography. Density measurement, solubility test, viscosity test, elemental analysis, FT-IR, 1H NMR spectral analysis were used to characterization of terpolymer and copolymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jiang, N. Xu, C. Xiao and X. Han, J. Macromol. Sci. Part B Phys., 53, 1814 (2014); doi:10.1080/00222348.2014.971686.
- B.L. Hiran and S.N. Paliwal, J. Macromol. Sci. Part A Pure Appl. Chem., 46, 713 (2009); doi:10.1080/10601320902939531.
- D. Jain, J. Maheshwari, N. Rathore and S.N. Paliwal, Rasayan J. Chem., 5, 445 (2012).
- S.L. Oswal, N.N. Chapaneri and N.I. Malek, Design. Monom.Polym., 10, 487 (2007); doi:10.1163/156855507782401141.
- B. Wang, J.F. Hinton and P. Pulay, J. Phys. Chem., 107, 4683 (2003); doi:10.1021/jp026986b.
- A. Omayu, S. Yoshioka and A. Matsumoto, Macromol. Chem. Phys., 210, 1210 (2009); doi:10.1002/macp.200900079.
- K. Backfolk, R. Holmes, P. Ihalainen, P. Sirviö, N. Triantafillopoulos and J. Peltonen, Polym. Test., 26, 1031 (2007); doi:10.1016/j.polymertesting.2007.07.007.
- A. Mbulu, Mater. Sci., 23, 9 (2008).
- Q.H. Zhou, L. Ming, P. Yang and G. Yi, Macromol. Theory Simul., 22, 107 (2013); doi:10.1002/mats.201200057.
- I.A. Mohammed and A. Mustapha, Molecules, 15, 7498 (2010); doi:10.3390/molecules15107498.
References
M. Jiang, N. Xu, C. Xiao and X. Han, J. Macromol. Sci. Part B Phys., 53, 1814 (2014); doi:10.1080/00222348.2014.971686.
B.L. Hiran and S.N. Paliwal, J. Macromol. Sci. Part A Pure Appl. Chem., 46, 713 (2009); doi:10.1080/10601320902939531.
D. Jain, J. Maheshwari, N. Rathore and S.N. Paliwal, Rasayan J. Chem., 5, 445 (2012).
S.L. Oswal, N.N. Chapaneri and N.I. Malek, Design. Monom.Polym., 10, 487 (2007); doi:10.1163/156855507782401141.
B. Wang, J.F. Hinton and P. Pulay, J. Phys. Chem., 107, 4683 (2003); doi:10.1021/jp026986b.
A. Omayu, S. Yoshioka and A. Matsumoto, Macromol. Chem. Phys., 210, 1210 (2009); doi:10.1002/macp.200900079.
K. Backfolk, R. Holmes, P. Ihalainen, P. Sirviö, N. Triantafillopoulos and J. Peltonen, Polym. Test., 26, 1031 (2007); doi:10.1016/j.polymertesting.2007.07.007.
A. Mbulu, Mater. Sci., 23, 9 (2008).
Q.H. Zhou, L. Ming, P. Yang and G. Yi, Macromol. Theory Simul., 22, 107 (2013); doi:10.1002/mats.201200057.
I.A. Mohammed and A. Mustapha, Molecules, 15, 7498 (2010); doi:10.3390/molecules15107498.