Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Differential Inelastic Scattering Cross-Section of Silicon and Gallium Arsenide Semiconductor Crystals
Corresponding Author(s) : E. Sakar
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
Because of the extensive usage of silicon and gallium arsenide semiconductor crystals, the differential inelastic scattering cross-sections at 59.5 keV have been measured for various scattering angles changing from 120 to 150 degrees by using an energy dispersive X-ray fluorescence spectrometer. The spectrometer includes an Am-241 radio isotopes as photon source and a Si(Li) detector. Experimental results of differential inelastic scattering cross-sections compared with theoretical results. We found a good agreement between experimental and theoretical values in the standard uncertainties. To our best of knowledge, these results are first data in the differential inelastic scattering cross-sections of silicon and gallium arsenide crystals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Hubbell, Radiat. Phys. Chem., 50, 113 (1997); doi:10.1016/S0969-806X(97)00049-2.
- N. Tsoulfanidis, Measurement and Detection of Radiation, Taylor & Francis, Washington, pp. 614 (1998).
- J.H. Hubbell, W.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer and R.J. Howerton, J. Phys. Chem. Ref. Data, 4, 471 (1975); doi:10.1063/1.555523.
- O. Klein and Y.Z. Nishina, Z. Phys., 52, 853 (1929); doi:10.1007/BF01366453.
- L.H. Thomas, Mathematical Physical Sci., 23, 542 (1926).
- E. Fermi, Z. Phys., 48, 73 (1928); doi:10.1007/BF01351576.
- H. Fock, Z. Phys., 61, 126 (1930); doi:10.1007/BF01340294.
- I. Han, M. Şahin, L. Demir and M. Kacal, Balkan Phys. Lett., 18, 377 (2010).
- U. Schiebel, A. Neufert and G. Clausnitzer, Radiat. Effects Defects Solids, 29, 57 (1976); doi:10.1080/00337577608233485.
- J. Matsumoto, F. Kwiatkowska, A. Maniawski, S. Bansil, M. Kaprzyk, H. Itou, N. Kawata and A. Shiotani, J. Phys. Chem. Solids, 61, 375 (2000); doi:10.1016/S0022-3697(99)00320-0.
- A. Kumar, J.S. Shahi, D. Mehta and N. Singh, Nucl. Instr. Methods B, 194, 105 (2002); doi:10.1016/S0168-583X(02)00668-7.
- F. Van Langevelde and R.D. Vis, Anal. Chem., 63, 2253 (1991); doi:10.1021/ac00020a011.
- M.F. Araújo, P. Van Espen and R. Van Grieken, XRay Spectrom., 19, 29 (1990); doi:10.1002/xrs.1300190107.
- K.K. Nielson, Anal. Chem., 49, 641 (1977); doi:10.1021/ac50012a034.
- J.S. Shahi, A. Kumar, D. Mehta, S. Puri, M.L. Garg and N. Singh, Nucl. Instr. Methods B, 179, 15 (2001); doi:10.1016/S0168-583X(00)00693-5.
- J.H. Hubbell and S.M. Seltzer, National Institute of Standards and Technology Report No. 5632 (1995).
- J.H. Scofield, UCRL Report No. 51326, Livermore, California (1973).
- J.H. Hubbell, P.N. Trehan, N. Singh, B. Chand, D. Mehta, M.L. Garg, R.R. Garg, S. Singh and S. Puri, J. Phys. Chem. Ref. Data, 23, 339 (1994); doi:10.1063/1.555955.
- J.H. Scofield, At. Data Nucl. Data Tables, 14, 121 (1974b); doi:10.1016/S0092-640X(74)80019-7.
- J.W.M. DuMond, Phys. Rev., 33, 643 (1929); doi:10.1103/PhysRev.33.643.
- J.W.M. DuMond and A. Hoyt, Phys. Rev., 36, 146 (1930); doi:10.1103/PhysRev.36.146.
- D.N. Timms, M.J. Cooper, R.S. Holt, F. Itoh, T. Kobaysai and H. Nara, J. Phys. Condens. Matter, 2, 10517 (1990); doi:10.1088/0953-8984/2/51/023.
- Y. Şahin and D. Demir, XRay Spectrom., 32, 336 (2003); doi:10.1002/xrs.638.
References
J.H. Hubbell, Radiat. Phys. Chem., 50, 113 (1997); doi:10.1016/S0969-806X(97)00049-2.
N. Tsoulfanidis, Measurement and Detection of Radiation, Taylor & Francis, Washington, pp. 614 (1998).
J.H. Hubbell, W.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer and R.J. Howerton, J. Phys. Chem. Ref. Data, 4, 471 (1975); doi:10.1063/1.555523.
O. Klein and Y.Z. Nishina, Z. Phys., 52, 853 (1929); doi:10.1007/BF01366453.
L.H. Thomas, Mathematical Physical Sci., 23, 542 (1926).
E. Fermi, Z. Phys., 48, 73 (1928); doi:10.1007/BF01351576.
H. Fock, Z. Phys., 61, 126 (1930); doi:10.1007/BF01340294.
I. Han, M. Şahin, L. Demir and M. Kacal, Balkan Phys. Lett., 18, 377 (2010).
U. Schiebel, A. Neufert and G. Clausnitzer, Radiat. Effects Defects Solids, 29, 57 (1976); doi:10.1080/00337577608233485.
J. Matsumoto, F. Kwiatkowska, A. Maniawski, S. Bansil, M. Kaprzyk, H. Itou, N. Kawata and A. Shiotani, J. Phys. Chem. Solids, 61, 375 (2000); doi:10.1016/S0022-3697(99)00320-0.
A. Kumar, J.S. Shahi, D. Mehta and N. Singh, Nucl. Instr. Methods B, 194, 105 (2002); doi:10.1016/S0168-583X(02)00668-7.
F. Van Langevelde and R.D. Vis, Anal. Chem., 63, 2253 (1991); doi:10.1021/ac00020a011.
M.F. Araújo, P. Van Espen and R. Van Grieken, XRay Spectrom., 19, 29 (1990); doi:10.1002/xrs.1300190107.
K.K. Nielson, Anal. Chem., 49, 641 (1977); doi:10.1021/ac50012a034.
J.S. Shahi, A. Kumar, D. Mehta, S. Puri, M.L. Garg and N. Singh, Nucl. Instr. Methods B, 179, 15 (2001); doi:10.1016/S0168-583X(00)00693-5.
J.H. Hubbell and S.M. Seltzer, National Institute of Standards and Technology Report No. 5632 (1995).
J.H. Scofield, UCRL Report No. 51326, Livermore, California (1973).
J.H. Hubbell, P.N. Trehan, N. Singh, B. Chand, D. Mehta, M.L. Garg, R.R. Garg, S. Singh and S. Puri, J. Phys. Chem. Ref. Data, 23, 339 (1994); doi:10.1063/1.555955.
J.H. Scofield, At. Data Nucl. Data Tables, 14, 121 (1974b); doi:10.1016/S0092-640X(74)80019-7.
J.W.M. DuMond, Phys. Rev., 33, 643 (1929); doi:10.1103/PhysRev.33.643.
J.W.M. DuMond and A. Hoyt, Phys. Rev., 36, 146 (1930); doi:10.1103/PhysRev.36.146.
D.N. Timms, M.J. Cooper, R.S. Holt, F. Itoh, T. Kobaysai and H. Nara, J. Phys. Condens. Matter, 2, 10517 (1990); doi:10.1088/0953-8984/2/51/023.
Y. Şahin and D. Demir, XRay Spectrom., 32, 336 (2003); doi:10.1002/xrs.638.