Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Film Thickness on the Coercivity of Electrodeposited Cobalt Film in Mesoporous and Macroporous Templates
Corresponding Author(s) : I.S. El-Hallag
Asian Journal of Chemistry,
Vol. 28 No. 4 (2016): Vol 28 Issue 4
Abstract
In this work, the effect of film thickness on coercivity of electrodeposited nanostructured cobalt film has been investigated. The technique described here, provided highly ordered magnetic nano-structures of the length of 9 nm, with 3 D architecture, obtained via pluronic lyotropic liquid crystal template as mesoporous template. Polystyrene spheres with pore sizes in the range of 200-1000 nm were used as macroporous templates. Variation of the film thickness of the electrodeposited film allowed us to fabricate nanomaterials with predetermined magnetic properties, including the dependence of the coercive field on the film thickness.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Pletcher and F. Wash, Industrial Electrochemistry, Chapman & Hall Ltd., London, edn 2 (1990).
- D. Pletcher, R. Greff, R. Peat, L.M. Peter, Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellisterwood, Chichester, Chap. 9 (1985).
- J.L. Bubendorff, E. Beaurepaire, C. Mény and J.P. Bucher, J. Appl. Phys., 83, 7043 (1998); doi:10.1063/1.367820.
- V.M. López-Hirata and E.M. Arce-Estrada, Electrochim. Acta, 42, 61 (1997); doi:10.1016/0013-4686(96)00166-1.
- S. Jaya, T.P. Rao and G.P. Rao, Electrochim. Acta, 32, 1073 (1987);doi:10.1016/0013-4686(87)90035-1.
- J. Dille, J. Charlier and R. Winand, Mater. Sci., 32, 2637 (1997); doi:10.1023/A:1018666804577.
- A.N. Correia, S A S. Machado and L.A. Avaca, J. Electroanal. Chem., 488, 110 (2000); doi:10.1016/S0022-0728(00)00192-3.
- J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith and G.J. Vancso, Adv. Mater., 15, 1599 (2003); doi:10.1002/adma.200305244.
- P.N. Bartlett, M.A. Ghanem, I.S. El Hallag, P. de Groot and A. Zhukov, J. Mater. Chem., 13, 2596 (2003); doi:10.1039/b304496c.
- A.A. Zhukov, P.N. Bartlett, M.A. Ghanem, H. Küpfer, G.J. Tomka, P.A.J. de Groot, R.J. Pugh and A.V. Goncharov, IEE Proc. Sci. Meas. Technol., 150, 257 (2003); doi:10.1049/ip-smt:20030880.
- S. Thompson, Chem. Br., 37, 34 (2001).
- M. Palomar-Pardave, I. Gonzalez, A.B. Soto and E.M. Arce, J. Electroanal. Chem., 443, 125 (1998); doi:10.1016/S0022-0728(97)00496-8.
- S. Floate, M. Hyde and R.G. Compton, J. Electroanal. Chem., 523, 49 (2002); doi:10.1016/S0022-0728(02)00709-X.
- G.S. Attard, J.C. Glyde and C.G. Goltner, Nature, 378, 366 (1995); doi:10.1038/378366a0.
- G.S. Attard, J.M. Corker, C.G. Göltner, S. Henke and R.H. Templer, Angew. Chem. Int. Ed. Engl., 36, 1315 (1997); doi:10.1002/anie.199713151.
- G.S. Attard, P.N. Bartlett, N.R.B. Cleman, J.M. Elliott, J.R. Owen and J.H. Wang, Science, 278, 838 (1997); doi:10.1126/science.278.5339.838.
- K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn and U. Gösele, Nano Lett., 2, 677 (2002); doi:10.1021/nl025537k.
- Y.-P. Zhao, R.M. Gamache, G.-C. Wang, T.-M. Lu, G. Palasantzas and J.T.M. De Hosson, J. Appl. Phys., 89, 1325 (2001); doi:10.1063/1.1331065.
- I.S. El-Hallag, Bull. Mater. Sci., 32, 555 (2009); doi:10.1007/s12034-009-0083-z.
- M.F. Toney, W.-Y. Lee, J.A. Hedstrom and A. Kellock, J. Appl. Phys., 93, 9902 (2003); doi:10.1063/1.1577226.
- R. Skomski and J.M.D. Coey, Permanent Magnetism, Institute of Physics, Publishing Bristol and Philadelphia (1999).
References
D. Pletcher and F. Wash, Industrial Electrochemistry, Chapman & Hall Ltd., London, edn 2 (1990).
D. Pletcher, R. Greff, R. Peat, L.M. Peter, Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellisterwood, Chichester, Chap. 9 (1985).
J.L. Bubendorff, E. Beaurepaire, C. Mény and J.P. Bucher, J. Appl. Phys., 83, 7043 (1998); doi:10.1063/1.367820.
V.M. López-Hirata and E.M. Arce-Estrada, Electrochim. Acta, 42, 61 (1997); doi:10.1016/0013-4686(96)00166-1.
S. Jaya, T.P. Rao and G.P. Rao, Electrochim. Acta, 32, 1073 (1987);doi:10.1016/0013-4686(87)90035-1.
J. Dille, J. Charlier and R. Winand, Mater. Sci., 32, 2637 (1997); doi:10.1023/A:1018666804577.
A.N. Correia, S A S. Machado and L.A. Avaca, J. Electroanal. Chem., 488, 110 (2000); doi:10.1016/S0022-0728(00)00192-3.
J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith and G.J. Vancso, Adv. Mater., 15, 1599 (2003); doi:10.1002/adma.200305244.
P.N. Bartlett, M.A. Ghanem, I.S. El Hallag, P. de Groot and A. Zhukov, J. Mater. Chem., 13, 2596 (2003); doi:10.1039/b304496c.
A.A. Zhukov, P.N. Bartlett, M.A. Ghanem, H. Küpfer, G.J. Tomka, P.A.J. de Groot, R.J. Pugh and A.V. Goncharov, IEE Proc. Sci. Meas. Technol., 150, 257 (2003); doi:10.1049/ip-smt:20030880.
S. Thompson, Chem. Br., 37, 34 (2001).
M. Palomar-Pardave, I. Gonzalez, A.B. Soto and E.M. Arce, J. Electroanal. Chem., 443, 125 (1998); doi:10.1016/S0022-0728(97)00496-8.
S. Floate, M. Hyde and R.G. Compton, J. Electroanal. Chem., 523, 49 (2002); doi:10.1016/S0022-0728(02)00709-X.
G.S. Attard, J.C. Glyde and C.G. Goltner, Nature, 378, 366 (1995); doi:10.1038/378366a0.
G.S. Attard, J.M. Corker, C.G. Göltner, S. Henke and R.H. Templer, Angew. Chem. Int. Ed. Engl., 36, 1315 (1997); doi:10.1002/anie.199713151.
G.S. Attard, P.N. Bartlett, N.R.B. Cleman, J.M. Elliott, J.R. Owen and J.H. Wang, Science, 278, 838 (1997); doi:10.1126/science.278.5339.838.
K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn and U. Gösele, Nano Lett., 2, 677 (2002); doi:10.1021/nl025537k.
Y.-P. Zhao, R.M. Gamache, G.-C. Wang, T.-M. Lu, G. Palasantzas and J.T.M. De Hosson, J. Appl. Phys., 89, 1325 (2001); doi:10.1063/1.1331065.
I.S. El-Hallag, Bull. Mater. Sci., 32, 555 (2009); doi:10.1007/s12034-009-0083-z.
M.F. Toney, W.-Y. Lee, J.A. Hedstrom and A. Kellock, J. Appl. Phys., 93, 9902 (2003); doi:10.1063/1.1577226.
R. Skomski and J.M.D. Coey, Permanent Magnetism, Institute of Physics, Publishing Bristol and Philadelphia (1999).