Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microstructure and Electrochemical Distinctiveness of b-Nickel Hydroxide by means of Zinc Additive and pH
Corresponding Author(s) : M.S. Santosh
Asian Journal of Chemistry,
Vol. 28 No. 3 (2016): Vol 28 Issue 3
Abstract
The properties of zinc additive and precipitation pH values on the electrochemical and microstructural characteristics of b-nickel hydroxide materials prepared by co-precipitation method have been studied. All the prepared nickel hydroxide samples showed an irregular flakes shape. A correlation between structural characteristics and electrochemical activity of b-nickel hydroxide has been established. The degree of crystallinity, crystallite size and crystal inter sheet distance of b-Ni(OH)2 were strongly associated with the pH values of the co-precipitation reaction. The electrochemical activity is represented by the (101) diffraction line, which increases with rising pH and the percentage of zinc additive. The percentage of SO42-, CO32- and H2O molecules adsorbed by b-Ni(OH)2 crystals and the thermal stability of b-Ni(OH)2 were related to pH. In moderately elevated pH values, the prepared b-Ni(OH)2 materials possessed a condensed crystallite size and the substandard thermal stability. All these characteristics were expected to obtain better electrochemical activity from b-nickel hydroxide in nickel based secondary batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet and A. Guibert, J. Power Sources, 8, 229 (1982); doi:10.1016/0378-7753(82)80057-8.
- B.C. Cornilsen, X.Y. Shan and P.L. Loyselle, J. Power Sources, 29, 453 (1990); doi:10.1016/0378-7753(90)85018-8.
- R.S. Jayashree, P.V. Kamath and G.N. Subbanna, J. Electrochem. Soc., 147, 2029 (2000); doi:10.1149/1.1393480.
- D. Singh, J. Electrochem. Soc., 145, 116 (1998); doi:10.1149/1.1838222.
- M. Oshitani, T. Takayama, K. Takashima and S. Tsuji, J. Appl. Electrochem., 16, 403 (1986); doi:10.1007/BF01008851.
- H.K. Liu, B. Bright, C.Y. Wang, M. Lindsay and S. Zhong, J. New Mater. Electrochem. Syst., 5, 47 (2002).
- K. Watanabe, T. Kikuoka and N. Kumagai, J. Appl. Electrochem., 25, 219 (1995); doi:10.1007/BF00262959.
- Q.S. Song, Ph.D. Dissertation, Tianjin University, China (2000).
- P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar and N. Munichandraiah, J. Electrochem. Soc., 141, 2956 (1994); doi:10.1149/1.2059264.
- L. Indira, M. Dixit and P.V. Kamath, J. Power Sources, 52, 93 (1994); doi:10.1016/0378-7753(94)01939-8.
- K. Watanabe and N. Kumagai, J. Power Sources, 76, 167 (1998); doi:10.1016/S0378-7753(98)00150-5.
- P.V. Kamath and G.N. Subbanna, J. Appl. Electrochem., 22, 478 (1992); doi:10.1007/BF01077552.
- L. Demourgues-Guerlou and C. Delmas, J. Power Sources, 45, 281 (1993); doi:10.1016/0378-7753(93)80017-J.
- C. Delmas, C. Faure and Y. Borthomieu, Mater. Sci. Eng. B, 13, 89 (1992); doi:10.1016/0921-5107(92)90147-2.
- M. Rajamathi, P.V. Kamath and R. Seshadri, J. Mater. Chem., 10, 503 (2000); doi:10.1039/A905651C.
- L. Guerlou-Demourgues, C. Denage and C. Delmas, J. Power Sources, 52, 269 (1994); doi:10.1016/0378-7753(94)02023-X.
- E. Shangguan, Z. Chang, H. Tang, X.-Z. Yuan and H. Wang, Int. J. Hydrogen Energy, 35, 9716 (2010); doi:10.1016/j.ijhydene.2010.06.096.
- B. Mani and J.P. Neufville, J. Electrochem. Soc., 135, 800 (1988); doi:10.1149/1.2095777.
References
P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet and A. Guibert, J. Power Sources, 8, 229 (1982); doi:10.1016/0378-7753(82)80057-8.
B.C. Cornilsen, X.Y. Shan and P.L. Loyselle, J. Power Sources, 29, 453 (1990); doi:10.1016/0378-7753(90)85018-8.
R.S. Jayashree, P.V. Kamath and G.N. Subbanna, J. Electrochem. Soc., 147, 2029 (2000); doi:10.1149/1.1393480.
D. Singh, J. Electrochem. Soc., 145, 116 (1998); doi:10.1149/1.1838222.
M. Oshitani, T. Takayama, K. Takashima and S. Tsuji, J. Appl. Electrochem., 16, 403 (1986); doi:10.1007/BF01008851.
H.K. Liu, B. Bright, C.Y. Wang, M. Lindsay and S. Zhong, J. New Mater. Electrochem. Syst., 5, 47 (2002).
K. Watanabe, T. Kikuoka and N. Kumagai, J. Appl. Electrochem., 25, 219 (1995); doi:10.1007/BF00262959.
Q.S. Song, Ph.D. Dissertation, Tianjin University, China (2000).
P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar and N. Munichandraiah, J. Electrochem. Soc., 141, 2956 (1994); doi:10.1149/1.2059264.
L. Indira, M. Dixit and P.V. Kamath, J. Power Sources, 52, 93 (1994); doi:10.1016/0378-7753(94)01939-8.
K. Watanabe and N. Kumagai, J. Power Sources, 76, 167 (1998); doi:10.1016/S0378-7753(98)00150-5.
P.V. Kamath and G.N. Subbanna, J. Appl. Electrochem., 22, 478 (1992); doi:10.1007/BF01077552.
L. Demourgues-Guerlou and C. Delmas, J. Power Sources, 45, 281 (1993); doi:10.1016/0378-7753(93)80017-J.
C. Delmas, C. Faure and Y. Borthomieu, Mater. Sci. Eng. B, 13, 89 (1992); doi:10.1016/0921-5107(92)90147-2.
M. Rajamathi, P.V. Kamath and R. Seshadri, J. Mater. Chem., 10, 503 (2000); doi:10.1039/A905651C.
L. Guerlou-Demourgues, C. Denage and C. Delmas, J. Power Sources, 52, 269 (1994); doi:10.1016/0378-7753(94)02023-X.
E. Shangguan, Z. Chang, H. Tang, X.-Z. Yuan and H. Wang, Int. J. Hydrogen Energy, 35, 9716 (2010); doi:10.1016/j.ijhydene.2010.06.096.
B. Mani and J.P. Neufville, J. Electrochem. Soc., 135, 800 (1988); doi:10.1149/1.2095777.