Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison of Biological Nitrate Reduction Effectiveness of Two Strains Isolated from Activated Sludge
Corresponding Author(s) : Y. Angar
Asian Journal of Chemistry,
Vol. 28 No. 2 (2016): Vol 28 Issue 2
Abstract
Denitrifications reactions are carried out by denitrifying bacteria which transform the nitrates ions to nitrite and then to atmospheric nitrogen. In this work, two strains B and C were isolated from an activated sludge and incubated separately in a bioreactor containing a synthetic medium rich in nitrates ions. The Griess test and zinc powder have proved the difference between denitrification capacity of the two selected strains. Therefore, strain B was able to reduce nitrate to nitrite as final product of the reduction. Nevertheless, the strain C had the ability of the complete reduction until the last stage passing through nitrite to atmospheric nitrogen, which gave also a reduction percentage of 75 % with a significant growth rate, in synthetic minimal medium. Finally, both bacteria, B and C were identified and tested on microscope.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Xue, Y. Gao, H. Yao and C. Huang, J. Environ. Sci. (China), 21, 1225 (2009); doi:10.1016/S1001-0742(08)62408-0.
- A. Hasanoglu, J. Romero, B. Pérez and A. Plaza, Chem. Eng. J., 160, 530 (2010); doi:10.1016/j.cej.2010.03.064.
- O. Højberg, S.J. Binnerup and J. Sørensen, Soil Biol. Biochem., 28, 47 (1996); doi:10.1016/0038-0717(95)00119-0.
- G. Du, J. Geng, J. Chen and S. Lun, World J. Microbiol. Biotechnol., 19, 433 (2003); doi:10.1023/A:1023985229493.
- M.F. Shao, T. Zhang and H.H.-P. Fang, Appl. Microbiol. Biotechnol., 88, 1027 (2010); doi:10.1007/s00253-010-2847-1.
- E.V. Morozkina and R.A. Zvyagilskaya, Biochemistry (Moscow), 72, 1151 (2007); doi:10.1134/S0006297907100124.
- J. Rodier et coll, 8e edition, pp.162-164, 194-200 (2005).
- P. Zhang and Z. Qi, Front. Environ. Sci. Eng. China, 1, 49 (2007); doi:10.1007/s11783-007-0009-1.
- A.R. Dinçer and F. Kargi, Enzyme Microb. Technol., 27, 37 (2000); doi:10.1016/S0141-0229(00)00145-9.
- D. Gao, Y. Peng, B. Li and H. Liang, Bioresour. Technol., 100, 2298 (2009); doi:10.1016/j.biortech.2008.11.017.
- Y. Wen, and C.H. Wei, Afr. J. Biotechnol., 10, 6985 (2011); doi:10.5897/AJB10.1855.
- S.C. Liang, M. Zhao, L. Lu, C.L. Wang, L.Y. Zhao and W.J. Liu, Afr. J. Biotechnol., 10, 10648 (2011); doi:10.5897/AJB11.569.
- H.S. Joo, M. Hirai and M. Shoda, J. Biosci. Bioeng., 100, 184 (2005); doi:10.1263/jbb.100.184.
- T.A. Krulwich and A. Guffanti, Annu. Rev. Microbiol., 43, 435 (1989); doi:10.1146/annurev.mi.43.100189.002251.
- J. Wang, Y. Peng, S. Wang and Y. Gao, Chin. J. Chem. Eng., 16, 778 (2008); doi:10.1016/S1004-9541(08)60155-X.
- G. Ruiz, D. Jeison, O. Rubilar, G. Ciudad and R. Chamy, Bioresour. Technol., 97, 330 (2006); doi:10.1016/j.biortech.2005.02.018.
- E.W.J. Niel, P.A.M. Arts, B.J. Wesselink, L.A. Robertson and J.G. Kuenen, Microb. Ecol., 102, 109 (1993); doi:10.1111/j.1574-6968.1993.tb05802.x.
- U. Sudarno, J. Winter and C. Gallert, Bioresour. Technol., 102, 5665 (2011); doi:10.1016/j.biortech.2011.02.078.
- N. Cedergreen and T. Vindbæk Madsen, Aquat. Bot., 76, 203 (2003); doi:10.1016/S0304-3770(03)00050-0.
- L. Hochstein and G.A. Tomlinson, Annu. Rev. Microbiol., 42, 231 (1988); doi:10.1146/annurev.mi.42.100188.001311.
- W. Zhao, Y. Wang, S. Liu, M. Pan, J. Yang and S. Chen, Chem. Eng. J., 215-216, 252 (2013); doi:10.1016/j.cej.2012.10.084.
- H. Wang, J. He, F. Ma, K. Yang and L. Wei, Sci. Res. Essays, 6, 748 (2011); doi:10.5897/SRE10.559.
References
D. Xue, Y. Gao, H. Yao and C. Huang, J. Environ. Sci. (China), 21, 1225 (2009); doi:10.1016/S1001-0742(08)62408-0.
A. Hasanoglu, J. Romero, B. Pérez and A. Plaza, Chem. Eng. J., 160, 530 (2010); doi:10.1016/j.cej.2010.03.064.
O. Højberg, S.J. Binnerup and J. Sørensen, Soil Biol. Biochem., 28, 47 (1996); doi:10.1016/0038-0717(95)00119-0.
G. Du, J. Geng, J. Chen and S. Lun, World J. Microbiol. Biotechnol., 19, 433 (2003); doi:10.1023/A:1023985229493.
M.F. Shao, T. Zhang and H.H.-P. Fang, Appl. Microbiol. Biotechnol., 88, 1027 (2010); doi:10.1007/s00253-010-2847-1.
E.V. Morozkina and R.A. Zvyagilskaya, Biochemistry (Moscow), 72, 1151 (2007); doi:10.1134/S0006297907100124.
J. Rodier et coll, 8e edition, pp.162-164, 194-200 (2005).
P. Zhang and Z. Qi, Front. Environ. Sci. Eng. China, 1, 49 (2007); doi:10.1007/s11783-007-0009-1.
A.R. Dinçer and F. Kargi, Enzyme Microb. Technol., 27, 37 (2000); doi:10.1016/S0141-0229(00)00145-9.
D. Gao, Y. Peng, B. Li and H. Liang, Bioresour. Technol., 100, 2298 (2009); doi:10.1016/j.biortech.2008.11.017.
Y. Wen, and C.H. Wei, Afr. J. Biotechnol., 10, 6985 (2011); doi:10.5897/AJB10.1855.
S.C. Liang, M. Zhao, L. Lu, C.L. Wang, L.Y. Zhao and W.J. Liu, Afr. J. Biotechnol., 10, 10648 (2011); doi:10.5897/AJB11.569.
H.S. Joo, M. Hirai and M. Shoda, J. Biosci. Bioeng., 100, 184 (2005); doi:10.1263/jbb.100.184.
T.A. Krulwich and A. Guffanti, Annu. Rev. Microbiol., 43, 435 (1989); doi:10.1146/annurev.mi.43.100189.002251.
J. Wang, Y. Peng, S. Wang and Y. Gao, Chin. J. Chem. Eng., 16, 778 (2008); doi:10.1016/S1004-9541(08)60155-X.
G. Ruiz, D. Jeison, O. Rubilar, G. Ciudad and R. Chamy, Bioresour. Technol., 97, 330 (2006); doi:10.1016/j.biortech.2005.02.018.
E.W.J. Niel, P.A.M. Arts, B.J. Wesselink, L.A. Robertson and J.G. Kuenen, Microb. Ecol., 102, 109 (1993); doi:10.1111/j.1574-6968.1993.tb05802.x.
U. Sudarno, J. Winter and C. Gallert, Bioresour. Technol., 102, 5665 (2011); doi:10.1016/j.biortech.2011.02.078.
N. Cedergreen and T. Vindbæk Madsen, Aquat. Bot., 76, 203 (2003); doi:10.1016/S0304-3770(03)00050-0.
L. Hochstein and G.A. Tomlinson, Annu. Rev. Microbiol., 42, 231 (1988); doi:10.1146/annurev.mi.42.100188.001311.
W. Zhao, Y. Wang, S. Liu, M. Pan, J. Yang and S. Chen, Chem. Eng. J., 215-216, 252 (2013); doi:10.1016/j.cej.2012.10.084.
H. Wang, J. He, F. Ma, K. Yang and L. Wei, Sci. Res. Essays, 6, 748 (2011); doi:10.5897/SRE10.559.