Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Transesterification Reaction for Biodiesel Production from Refined Palm Oil using Calcined Quick Lime Catalyst
Corresponding Author(s) : V. Punsuvon
Asian Journal of Chemistry,
Vol. 28 No. 2 (2016): Vol 28 Issue 2
Abstract
Commercial quick lime was calcined to produce calcium oxide and it was explored as solid catalyst for the transesterification of refined palm oil with methanol. The physico-chemical properties of catalyst were characterized by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller. The results from characterization showed that calcium oxide was successful synthesized. In the investigation of catalyst activity for transesterification reaction, a response surface methodology was performed. The design of experiment was made by application of 5-level-3-factors central composite design in order to study the effect of different factors on the percentage of fatty acid methyl ester conversion that determined by 1H NMR. Quadratic model equation was obtained describing the inter-relationships between dependent and independent variables to maximize the fatty acid methyl ester conversion. Fuel properties of the produced biodiesel were also examined and the results were met well with biodiesel standard.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Lee and S. Saka, Bioresour. Technol., 101, 7191 (2010); doi:10.1016/j.biortech.2010.04.071; F.J. Lovas, R.D. Suenram, G.T. Fraser, C.W. Gillies and J. Zozom, J. Chem. Phys., 88, 722 (1988); doi:10.1063/1.454151.
- M.K. Lam, K.T. Lee and A.R. Mohamed, Biotechnol. Adv., 28, 500 (2010); doi:10.1016/j.biotechadv.2010.03.002.
- H. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong and G. Huang, Renew. Energy, 33, 1678 (2008); doi:10.1016/j.renene.2007.09.007.
- J.-Y. Park, J.-S. Lee, Z.-M. Wang and D.-K. Kim, Korean J. Chem. Eng., 27, 1791 (2010); doi:10.1007/s11814-010-0297-1.
- W. Malilas, S.W. Kang, S.B. Kim, H.Y. Yoo, W. Chulalaksananukul and S.W. Kim, Korean J. Chem. Eng., 30, 405 (2013); doi:10.1007/s11814-012-0132-y.
- A. Kawashima, K. Matsubara and K. Honda, Bioresour. Technol., 100, 696 (2009); doi:10.1016/j.biortech.2008.06.049.
- G. Knothe, J. Am. Oil Chem. Soc., 83, 823 (2006); doi:10.1007/s11746-006-5033-y.
- S. Niju, K.M. Meera, S. Begum and N. Anantharaman, J. Saudi Chem. Soc., 18, 702 (2014); doi:10.1016/j.jscs.2014.02.010.
- K.T. Lee, A. Matlina Mohtar, N.F. Zainudin, S. Bhatia and A.R. Mohamed, Fuel, 84, 143 (2005); doi:10.1016/j.fuel.2004.08.018.
- A.I. Khuri and J.A. Cornell, Response Surfaces: Designs and Analyses, Marcel Dekker, New York (1978).
- D.C. Seber, Linear Regression Analysis, John Wiley & Sons, New York (1977).
- G. Arzamendi, I. Campo, E. Arguiñarena, M. Sánchez, M. Montes and L.M. Gandía, Chem. Eng. J., 134, 123 (2007); doi:10.1016/j.cej.2007.03.049.
- Z. Wan and B.H. Hameed, Bioresour. Technol., 102, 2659 (2011); doi:10.1016/j.biortech.2010.10.119.
- S. Panpraneecharoen, V. Punsuvon and D. Puemchalad, Asian J. Chem., 27, 1023 (2015); doi:10.14233/ajchem.2015.18023.
- W. Suwanthai, V. Punsuvon and P. Vaithanomsat, Adv. Mater. Res., 834-836, 550 (2013); doi:10.4028/www.scientific.net/AMR.834-836.550.
- M.R. Monteiro, A.R.P. Ambrozin, L.M. Lião and A.G. Ferreira, Fuel, 88, 691 (2009); doi:10.1016/j.fuel.2008.10.010.
References
J.S. Lee and S. Saka, Bioresour. Technol., 101, 7191 (2010); doi:10.1016/j.biortech.2010.04.071; F.J. Lovas, R.D. Suenram, G.T. Fraser, C.W. Gillies and J. Zozom, J. Chem. Phys., 88, 722 (1988); doi:10.1063/1.454151.
M.K. Lam, K.T. Lee and A.R. Mohamed, Biotechnol. Adv., 28, 500 (2010); doi:10.1016/j.biotechadv.2010.03.002.
H. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong and G. Huang, Renew. Energy, 33, 1678 (2008); doi:10.1016/j.renene.2007.09.007.
J.-Y. Park, J.-S. Lee, Z.-M. Wang and D.-K. Kim, Korean J. Chem. Eng., 27, 1791 (2010); doi:10.1007/s11814-010-0297-1.
W. Malilas, S.W. Kang, S.B. Kim, H.Y. Yoo, W. Chulalaksananukul and S.W. Kim, Korean J. Chem. Eng., 30, 405 (2013); doi:10.1007/s11814-012-0132-y.
A. Kawashima, K. Matsubara and K. Honda, Bioresour. Technol., 100, 696 (2009); doi:10.1016/j.biortech.2008.06.049.
G. Knothe, J. Am. Oil Chem. Soc., 83, 823 (2006); doi:10.1007/s11746-006-5033-y.
S. Niju, K.M. Meera, S. Begum and N. Anantharaman, J. Saudi Chem. Soc., 18, 702 (2014); doi:10.1016/j.jscs.2014.02.010.
K.T. Lee, A. Matlina Mohtar, N.F. Zainudin, S. Bhatia and A.R. Mohamed, Fuel, 84, 143 (2005); doi:10.1016/j.fuel.2004.08.018.
A.I. Khuri and J.A. Cornell, Response Surfaces: Designs and Analyses, Marcel Dekker, New York (1978).
D.C. Seber, Linear Regression Analysis, John Wiley & Sons, New York (1977).
G. Arzamendi, I. Campo, E. Arguiñarena, M. Sánchez, M. Montes and L.M. Gandía, Chem. Eng. J., 134, 123 (2007); doi:10.1016/j.cej.2007.03.049.
Z. Wan and B.H. Hameed, Bioresour. Technol., 102, 2659 (2011); doi:10.1016/j.biortech.2010.10.119.
S. Panpraneecharoen, V. Punsuvon and D. Puemchalad, Asian J. Chem., 27, 1023 (2015); doi:10.14233/ajchem.2015.18023.
W. Suwanthai, V. Punsuvon and P. Vaithanomsat, Adv. Mater. Res., 834-836, 550 (2013); doi:10.4028/www.scientific.net/AMR.834-836.550.
M.R. Monteiro, A.R.P. Ambrozin, L.M. Lião and A.G. Ferreira, Fuel, 88, 691 (2009); doi:10.1016/j.fuel.2008.10.010.