Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Vortex-Assisted Liquid-Phase Microextraction for Platinum in Water Samples Prior to Flame Atomic Absorption Spectrometry Determination
Corresponding Author(s) : Yaling Yang
Asian Journal of Chemistry,
Vol. 28 No. 2 (2016): Vol 28 Issue 2
Abstract
A vortex-assisted liquid-phase microextraction was applied for the extraction of trace amounts of platinum(II) prior to flame atomic absorption spectrometry detection in the water sample. Ammonium pyrolysine dithiocarbamate was used as the chelating agent and n-octanol as an extractant. The fine droplets of n-octanol were made and dispersed as a cloud in the aqueous sample with the help of vortex mixing. Different parameters such as the pH, the amount of ammonium pyrolysine dithiocarbamate, the composition and volume of the extraction agent and vortex time were studied to get the optimum results. Under optimal conditions, the low limit of detection is 2.0 μg mL-1. Recoveries of platinum spiked into tap water samples were in the range of 85.0~91.5 %. The relative standard deviations is 2.12 % (n = 6). The correlation coefficient of the calibration curve is 0.9977. The proposed method was successfully applied for the determination of platinum in the real tap water samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Morikawa, K. Okumura, M. Ishii, K. Kikuta, A. Suda and H. Shinjo, J. Rare Metals, 30, 53 (2011); doi:10.1007/s12598-011-0196-6.
- M. Balcerzak, Crit. Rev. Anal. Chem., 41, 214 (2011); doi:10.1080/10408347.2011.588922.
- E.J. Underwood, Trace Elements in Human and Animal Nutrition, Academic Press, New York, p. 92 (1977).
- D.L. Tsalev and Z.K. Zaprianov, Atomic Absorption Spectrometry in Occupational and Environmental Health 0Practice, CRC Press, Boca Raton, Florida, vol. 1, p. 104 (1985).
- P. Liang and H.B. Sang, Anal. Biochem., 380, 21 (2008); doi:10.1016/j.ab.2008.05.008.
- I.M. Shaibal, F. Khanom, M.A. Rahman and A.M.S. Alam, Pak. J. Anal. Chem., 6, 35 (2005).
- K.S. Kumar, K. Suvardhan, L. Krishnaiah and P. Chiranjeevi, Helv. Chim. Acta, 88, 343 (2005); doi:10.1002/hlca.200590018.
- C. Bosch Ojeda, F. Sánchez Rojas, J.M. Cano Pavón and A. Garcia de Torres, Anal. Chim. Acta, 494, 97 (2003); doi:10.1016/S0003-2670(03)01014-6.
- H. Parham, N. Pourreza and N. Rahbar, J. Hazard. Mater., 163, 588 (2009); doi:10.1016/j.jhazmat.2008.07.007.
- R. Khani, F. Shemirani and B. Majidi, Desalination, 266, 238 (2011); doi:10.1016/j.desal.2010.08.032.
- L.V. Bogacheva, I.A. Kovalev, G.I. Tsysin, A.A. Formanovsky and Y.A. Zolotov, Mendeleev Commun., 8, 171 (1998); doi:10.1070/MC1998v008n05ABEH000959.
- G. Ozcelik, M. Imamoglu, S.Z. Yildiz and D. Kara, Water Air Soil Pollut., 223, 5391 (2012); doi:10.1007/s11270-012-1288-0.
- R. Golbedaghi, S. Jafari, M.R. Yaftian, R. Azadbakht, S. Salehzadeh and B. Jaleh, J. Indian Chem. Soc., 89, 251 (2012).
- Sh.D. Abkenar, Z. Dahaghin, H.B. Sadeghi, M. Hosseini and M. Salavati-Niasari, J. Anal. Chem., 66, 612 (2011); doi:10.1134/S1061934811060062.
- E. Yiantzi, E. Psillakis, K. Tyrovola and N. Kalogerakis, Talanta, 80, 2057 (2010); doi:10.1016/j.talanta.2009.11.005.
- D. Bakircioglu, Environ. Sci. Pollut. Res., 19, 2428 (2012); doi:10.1007/s11356-012-0755-x.
- D. Citak and M. Tuzen, Food Chem. Toxicol., 48, 1399 (2010); doi:10.1016/j.fct.2010.03.008.
- K. Kocot, B. Zawisza and R. Sitko, Spectrochim. Acta B, 73, 79 (2012); doi:10.1016/j.sab.2012.05.003.
- I.A. Kovalev, L.V. Bogacheva, G.I. Tsysin, A.A. Formanovsky and Yu.A. Zolotov, Talanta, 52, 39 (2000); doi:10.1016/S0039-9140(00)00314-3.
- S. Scaccia and B. Goszczynska, Talanta, 63, 791 (2004); doi:10.1016/j.talanta.2003.12.014.
References
A. Morikawa, K. Okumura, M. Ishii, K. Kikuta, A. Suda and H. Shinjo, J. Rare Metals, 30, 53 (2011); doi:10.1007/s12598-011-0196-6.
M. Balcerzak, Crit. Rev. Anal. Chem., 41, 214 (2011); doi:10.1080/10408347.2011.588922.
E.J. Underwood, Trace Elements in Human and Animal Nutrition, Academic Press, New York, p. 92 (1977).
D.L. Tsalev and Z.K. Zaprianov, Atomic Absorption Spectrometry in Occupational and Environmental Health 0Practice, CRC Press, Boca Raton, Florida, vol. 1, p. 104 (1985).
P. Liang and H.B. Sang, Anal. Biochem., 380, 21 (2008); doi:10.1016/j.ab.2008.05.008.
I.M. Shaibal, F. Khanom, M.A. Rahman and A.M.S. Alam, Pak. J. Anal. Chem., 6, 35 (2005).
K.S. Kumar, K. Suvardhan, L. Krishnaiah and P. Chiranjeevi, Helv. Chim. Acta, 88, 343 (2005); doi:10.1002/hlca.200590018.
C. Bosch Ojeda, F. Sánchez Rojas, J.M. Cano Pavón and A. Garcia de Torres, Anal. Chim. Acta, 494, 97 (2003); doi:10.1016/S0003-2670(03)01014-6.
H. Parham, N. Pourreza and N. Rahbar, J. Hazard. Mater., 163, 588 (2009); doi:10.1016/j.jhazmat.2008.07.007.
R. Khani, F. Shemirani and B. Majidi, Desalination, 266, 238 (2011); doi:10.1016/j.desal.2010.08.032.
L.V. Bogacheva, I.A. Kovalev, G.I. Tsysin, A.A. Formanovsky and Y.A. Zolotov, Mendeleev Commun., 8, 171 (1998); doi:10.1070/MC1998v008n05ABEH000959.
G. Ozcelik, M. Imamoglu, S.Z. Yildiz and D. Kara, Water Air Soil Pollut., 223, 5391 (2012); doi:10.1007/s11270-012-1288-0.
R. Golbedaghi, S. Jafari, M.R. Yaftian, R. Azadbakht, S. Salehzadeh and B. Jaleh, J. Indian Chem. Soc., 89, 251 (2012).
Sh.D. Abkenar, Z. Dahaghin, H.B. Sadeghi, M. Hosseini and M. Salavati-Niasari, J. Anal. Chem., 66, 612 (2011); doi:10.1134/S1061934811060062.
E. Yiantzi, E. Psillakis, K. Tyrovola and N. Kalogerakis, Talanta, 80, 2057 (2010); doi:10.1016/j.talanta.2009.11.005.
D. Bakircioglu, Environ. Sci. Pollut. Res., 19, 2428 (2012); doi:10.1007/s11356-012-0755-x.
D. Citak and M. Tuzen, Food Chem. Toxicol., 48, 1399 (2010); doi:10.1016/j.fct.2010.03.008.
K. Kocot, B. Zawisza and R. Sitko, Spectrochim. Acta B, 73, 79 (2012); doi:10.1016/j.sab.2012.05.003.
I.A. Kovalev, L.V. Bogacheva, G.I. Tsysin, A.A. Formanovsky and Yu.A. Zolotov, Talanta, 52, 39 (2000); doi:10.1016/S0039-9140(00)00314-3.
S. Scaccia and B. Goszczynska, Talanta, 63, 791 (2004); doi:10.1016/j.talanta.2003.12.014.