Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorescence Spectroscopy of Interaction between Hg(II) and Keyhole Limpet Hemocyanin
Corresponding Author(s) : Xun Li
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
The interaction between Hg(II) and keyhole limpet hemocyanin (KLH) under simulated physiological conditions was investigated by fluorescence spectroscopy. The keyhole limpet hemocyanin fluorescence quenching mechanism and the interacting mode of the Hg(II)-KLH system were studied. The experimental data showed that the intrinsic fluorescence of keyhole limpet hemocyanin was quenched with Hg(II) through a static quenching process, which indicates that a Hg(II)-KLH complex was formed. The thermodynamic parameters, binding constants and number of binding sites were calculated at different temperatures. These experimental results show that the hydrogen bonds and van der Waals forces are attributed to stabilization of the Hg(II)-KLH system. Synchronous fluorescence spectra indicated that Hg2+ lead to conformational changes of keyhole limpet hemocyanin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.W. Clarkson and L. Magos, Crit. Rev. Toxicol., 36, 609 (2006); doi:10.1080/10408440600845619.
- J.R. Harris and J. Markl, Eur. Urol., 37, 24 (2000); doi:10.1159/000052389.
- A. Varshney, B. Ahmad, G. Rabbani, V. Kumar, S. Yadav and R.H. Khan, Amino Acids, 39, 899 (2010); doi:10.1007/s00726-010-0524-4.
- A. Ogunsipe and T. Nyokong, Photochem. Photobiol. Sci., 4, 510 (2005); doi:10.1039/b416304d.
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, p. 237 (1999).
- J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); doi:10.1021/bi00745a020.
- J. Seetharamappa and B.P. Kamat, Chem. Pharm. Bull. (Tokyo), 52, 1053 (2004); doi:10.1248/cpb.52.1053.
- Y. Ni, S. Wang and S. Kokot, Anal. Chim. Acta, 663, 139 (2010); doi:10.1016/j.aca.2010.01.053.
- G. Zhang, N. Zhao, X. Hu and J. Tian, Spectrochim. Acta A, 76, 410 (2010); doi:10.1016/j.saa.2010.04.009.
- Y.Q. Wang, H.M. Zhang and Q.H. Zhou, Eur. J. Med. Chem., 44, 2100 (2009); doi:10.1016/j.ejmech.2008.10.010.
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
- J. Xiao, J. Shi, H. Cao, S. Wu, F. Ren and M. Xu, J. Pharm. Biomed. Anal., 45, 609 (2007); doi:10.1016/j.jpba.2007.08.032.
- O. Azimi, Z. Emami, H. Salari and J. Chamani, Molecules, 16, 9792 (2011); doi:10.3390/molecules16129792.
- X.N. Yan, B.S. Liu, B.H. Chong and S.N. Cao, J. Lumin., 142, 155 (2013); doi:10.1016/j.jlumin.2013.04.009.
References
T.W. Clarkson and L. Magos, Crit. Rev. Toxicol., 36, 609 (2006); doi:10.1080/10408440600845619.
J.R. Harris and J. Markl, Eur. Urol., 37, 24 (2000); doi:10.1159/000052389.
A. Varshney, B. Ahmad, G. Rabbani, V. Kumar, S. Yadav and R.H. Khan, Amino Acids, 39, 899 (2010); doi:10.1007/s00726-010-0524-4.
A. Ogunsipe and T. Nyokong, Photochem. Photobiol. Sci., 4, 510 (2005); doi:10.1039/b416304d.
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, p. 237 (1999).
J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); doi:10.1021/bi00745a020.
J. Seetharamappa and B.P. Kamat, Chem. Pharm. Bull. (Tokyo), 52, 1053 (2004); doi:10.1248/cpb.52.1053.
Y. Ni, S. Wang and S. Kokot, Anal. Chim. Acta, 663, 139 (2010); doi:10.1016/j.aca.2010.01.053.
G. Zhang, N. Zhao, X. Hu and J. Tian, Spectrochim. Acta A, 76, 410 (2010); doi:10.1016/j.saa.2010.04.009.
Y.Q. Wang, H.M. Zhang and Q.H. Zhou, Eur. J. Med. Chem., 44, 2100 (2009); doi:10.1016/j.ejmech.2008.10.010.
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
J. Xiao, J. Shi, H. Cao, S. Wu, F. Ren and M. Xu, J. Pharm. Biomed. Anal., 45, 609 (2007); doi:10.1016/j.jpba.2007.08.032.
O. Azimi, Z. Emami, H. Salari and J. Chamani, Molecules, 16, 9792 (2011); doi:10.3390/molecules16129792.
X.N. Yan, B.S. Liu, B.H. Chong and S.N. Cao, J. Lumin., 142, 155 (2013); doi:10.1016/j.jlumin.2013.04.009.