Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cyclic Voltammetric Study of Protonation Reactions of Some Dinitroaromatics in Propylene Carbonate
Corresponding Author(s) : Ghazala Yasmeen
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
Cyclic voltammetric technique is used to study the protonation of anion radicals of 1,2-dinitrobenzene and 1,3-dinitrobenzene in propylene carbonate in the temperature range 5, 15, 25 and 35 °C. Glassy carbon electrode and hanging mercury drop electrode are used as working electrodes. Benzoic acid and salicylic acid are used as protonating agents. Homogeneous rate constant is calculated by using Nicholson and Shain equation. The position of nucleophilic attack in dinitrobenzenes has been investigated by calculation of charge densities using molecular orbital methods. The heterogeneous rate constant ks,h for the first reduction process in dinitrobenzenes is determined by digital simulation of the cyclic voltammograms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Chakraborty, S. Ahamed, S. Pal and S.K. Saha, ISRN Electrochem., Article ID 959128 (2013); doi:10.1155/2013/959128.
- M.A. Deyab and S.T. Keera, Egyptian J. Petrol., 21, 31 (2012); doi:10.1016/j.ejpe.2012.02.005.
- L.J. Nunez-Vergara, S. Bollo, A.F. Alvarez, J.A. Squella and M. Blazquez, J. Electroanal. Chem., 345, 121 (1993); doi:10.1016/0022-0728(93)80473-U.
- L.J. Núñez-Vergara, F. García, M.M. Domínguez, J. de la Fuente and J.A. Squella, J. Electroanal. Chem., 381, 215 (1995); doi:10.1016/0022-0728(94)03647-L.
- M. Sharp, J. Electroanal. Chem. Interfacial Electrochem., 88, 193 (1978); doi:10.1016/S0022-0728(78)80267-8.
- C. Amatore, J. Pinson, J.M. Saveant and A. Thiebault, J. Electroanal. Chem. Interfacial Electrochem., 107, 59 (1980); doi:10.1016/S0022-0728(79)80007-8.
- E. Ahlberg and V.D. Parker, J. Electroanal. Chem. Interfacial Electrochem., 121, 57 (1981); doi:10.1016/S0022-0728(81)80568-2.
- R.J. Klingler and J.K. Kochi, J. Am. Chem. Soc., 102, 4790 (1980); doi:10.1021/ja00534a036.
- S.W. Feldberg and A.J. Bard, Electroanalytical Chemistry, Marcel Dekker, New York, p. 199 (1969).
- D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1954).
- D.H. Geske, J.L. Ragle, M.A. Bambenek and A.L. Balch, J. Am. Chem. Soc., 86, 987 (1964); doi:10.1021/ja01060a004.
- M. Mohammad, A.Y. Khan, M.S. Subhani, W. Begum, N. Ashraf, R. Qureshi and R. Iqbal, Res. Chem. Intermed., 16, 29 (1991); doi:10.1163/156856791X00165.
- N.A. Macías-Ruvalcaba, J.P. Telo and D.H. Evans, J. Electroanal. Chem., 600, 294 (2007); doi:10.1016/j.jelechem.2006.10.003.
- F. Hanif, G. Yasmeen, R. Parveen and M. Amir, Asian J. Chem., 26, 5063 (2014); doi:10.14233/ajchem.2014.16319.
- F. Hanif, G. Yasmeen, R. Parveen and M. Amir, J. Chem. Soc. Pak., 36, 422 (2014).
- F.C. Walsh, Transac. Institute Metal Finishing, 70, 50 (1992).
- D.T. Sawyer, Experimental Electrochemistry for Chemists, John Wiley & Sons, p. 170 (1974).
- N.E. Miller, M.C. Wander and R.J. Cave, J. Phys. Chem., 103, 1084 (1999); doi:10.1021/jp983171n.
- D.H. Evans, Chem. Rev., 108, 2113 (2008); doi:10.1021/cr068066l.
- T.T.T. Li and M.J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984); doi:10.1021/ja00332a073.
- D.C. Grahame, J. Chem. Phys., 18, 903 (1950); doi:10.1063/1.1747807.
- F. Booth, J. Chem. Phys., 19, 391 (1951); doi:10.1063/1.1748233.
- J.M. Hale, Reactions of Molecules at electrodes, Wiley Interscience, New York (1970).
- D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1981).
References
A. Chakraborty, S. Ahamed, S. Pal and S.K. Saha, ISRN Electrochem., Article ID 959128 (2013); doi:10.1155/2013/959128.
M.A. Deyab and S.T. Keera, Egyptian J. Petrol., 21, 31 (2012); doi:10.1016/j.ejpe.2012.02.005.
L.J. Nunez-Vergara, S. Bollo, A.F. Alvarez, J.A. Squella and M. Blazquez, J. Electroanal. Chem., 345, 121 (1993); doi:10.1016/0022-0728(93)80473-U.
L.J. Núñez-Vergara, F. García, M.M. Domínguez, J. de la Fuente and J.A. Squella, J. Electroanal. Chem., 381, 215 (1995); doi:10.1016/0022-0728(94)03647-L.
M. Sharp, J. Electroanal. Chem. Interfacial Electrochem., 88, 193 (1978); doi:10.1016/S0022-0728(78)80267-8.
C. Amatore, J. Pinson, J.M. Saveant and A. Thiebault, J. Electroanal. Chem. Interfacial Electrochem., 107, 59 (1980); doi:10.1016/S0022-0728(79)80007-8.
E. Ahlberg and V.D. Parker, J. Electroanal. Chem. Interfacial Electrochem., 121, 57 (1981); doi:10.1016/S0022-0728(81)80568-2.
R.J. Klingler and J.K. Kochi, J. Am. Chem. Soc., 102, 4790 (1980); doi:10.1021/ja00534a036.
S.W. Feldberg and A.J. Bard, Electroanalytical Chemistry, Marcel Dekker, New York, p. 199 (1969).
D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1954).
D.H. Geske, J.L. Ragle, M.A. Bambenek and A.L. Balch, J. Am. Chem. Soc., 86, 987 (1964); doi:10.1021/ja01060a004.
M. Mohammad, A.Y. Khan, M.S. Subhani, W. Begum, N. Ashraf, R. Qureshi and R. Iqbal, Res. Chem. Intermed., 16, 29 (1991); doi:10.1163/156856791X00165.
N.A. Macías-Ruvalcaba, J.P. Telo and D.H. Evans, J. Electroanal. Chem., 600, 294 (2007); doi:10.1016/j.jelechem.2006.10.003.
F. Hanif, G. Yasmeen, R. Parveen and M. Amir, Asian J. Chem., 26, 5063 (2014); doi:10.14233/ajchem.2014.16319.
F. Hanif, G. Yasmeen, R. Parveen and M. Amir, J. Chem. Soc. Pak., 36, 422 (2014).
F.C. Walsh, Transac. Institute Metal Finishing, 70, 50 (1992).
D.T. Sawyer, Experimental Electrochemistry for Chemists, John Wiley & Sons, p. 170 (1974).
N.E. Miller, M.C. Wander and R.J. Cave, J. Phys. Chem., 103, 1084 (1999); doi:10.1021/jp983171n.
D.H. Evans, Chem. Rev., 108, 2113 (2008); doi:10.1021/cr068066l.
T.T.T. Li and M.J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984); doi:10.1021/ja00332a073.
D.C. Grahame, J. Chem. Phys., 18, 903 (1950); doi:10.1063/1.1747807.
F. Booth, J. Chem. Phys., 19, 391 (1951); doi:10.1063/1.1748233.
J.M. Hale, Reactions of Molecules at electrodes, Wiley Interscience, New York (1970).
D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1981).