Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimizing Process Conditions for Stingless Bee (Melipona irridipennis) Mead Fermentation Using Plackett-Burman Design and Response Surface Methodology
Corresponding Author(s) : N. Srimeena
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
In present investigation, mead (honey wine) fermentation parameters were optimized by Placket-Burman design and response surface methodology (RSM). Eleven nutritional and fermentation parameters (TSS, pH, temperature, inoculum size, fermentation time, tartaric acid, di ammonium phosphate, potassium sodium tartrate, magnesium sulphate, calcium sulphate and potassium meta bisulphate) were screened using Plackett-Burman experimental design were further optimized by central composite design of response surface methodology for maximizing the yield of ethanol in mead. Among the eleven independent variables TSS, temperature and fermentation time had high influence on the alcohol content. The maximum production of stingless bee mead obtained experimentally using the optimized parameters was 15 °Brix at 28 °C for 6 days which are in correlation with the predicted value. The model showed that the value of R2 (0.9991) was high and p-value of interaction of variance was < 0.0001. Hence the model can be said to be of highly significant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.W. White, in ed.: E. Crane, Composition of Honey, In: Honey: A Comprehensive Survey, London, pp. 157–158 (1979).
- T.L. McCarthy, J.P. Kerry, J.F. Kerry, P.B. Lynch and D.J. Buckley, Meat Sci., 57, 177 (2001); doi:10.1016/S0309-1740(00)00090-5.
- C.J. Adams, M. Manley-Harris and P.C. Molan, Carbohydr. Res., 344, 1050 (2009); doi:10.1016/j.carres.2009.03.020.
- P.F. Stanbury, A. Whitaker and S.J. Hall, Principles of Fermentation Technology, Butterworth-Heinemann Publications, edn 2, ISBN 0750645016 (2003).
- M. Karuppaiya, E. Sasikumar, T. Viruthagiri and V. Vijayagopal, Chem. Eng. Commun., 196, 1425 (2009); doi:10.1080/00986440902938972.
- S.B. Imandi, S.K. Karanam and H.R. Garapati, Adv. Biosci. Biotechnol., 1, 115 (2010); doi:10.4236/abb.2010.12016.
- Q.M. Abdulaziz, A. Sarrani and Y.M. El-Naggar, Bot. Stud. (Taipei, Taiwan), 47, 167 (2006).
- S.B. Imandi and G.H. Rao, Res. J. Microbiol., 2, 88 (2007); doi:10.3923/jm.2007.88.93.
- K. Maruthai, V. Thangavelu and M. Kanagasabai, Int. J. Chem. Biol. Eng., 6, 108 (2012).
- A.R. Padhiar and H.A. Modi, Int. J. Biotechnol. Res., 3, 59 (2013).
- D. D'Amato, M.R. Corbo, M.A.D. Nobile and M. Sinigaglia, Int. J. Food Sci. Technol., 41, 1152 (2006); doi:10.1111/j.1365-2621.2005.01128.x.
- S. Nikolic, L. Mojovic, M. Rakin and D. Pejin, Fuel, 88, 1602 (2009); doi:10.1016/j.fuel.2008.12.019.
- S. Rousseau, D. Rouleau, L. Yerushalmi and R.C. Mayer, J. Chem. Technol. Biotechnol., 53, 285 (1992); doi:10.1002/jctb.280530309.
- F. Ozcelik and Y. Denli, Gida, 24, 385 (1996).
- M.J. Torija, G. Beltran, M. Novo, M. Poblet, J.M. Guillamón, A. Mas and N. Rozès, Int. J. Food Microbiol., 85, 127 (2003); doi:10.1016/S0168-1605(02)00506-8.
- D.A. Bocchini, H.F. Alves-Prado, L.C. Baida, I.C. Roberto, E. Gomes and R. Da Silva, Process Biochem., 38, 727 (2002); doi:10.1016/S0032-9592(02)00207-8.
- T.Z.M.N. Hajar, S. Zainal, O. Atikah and T. Elida, World Acad. Sci. Eng. Technol., 72, 111 (2012).
- S. Ghosh, R. Chakraborty and U. Raychaudhuri, Int. Food Res. J., 19, 1633 (2012).
References
J.W. White, in ed.: E. Crane, Composition of Honey, In: Honey: A Comprehensive Survey, London, pp. 157–158 (1979).
T.L. McCarthy, J.P. Kerry, J.F. Kerry, P.B. Lynch and D.J. Buckley, Meat Sci., 57, 177 (2001); doi:10.1016/S0309-1740(00)00090-5.
C.J. Adams, M. Manley-Harris and P.C. Molan, Carbohydr. Res., 344, 1050 (2009); doi:10.1016/j.carres.2009.03.020.
P.F. Stanbury, A. Whitaker and S.J. Hall, Principles of Fermentation Technology, Butterworth-Heinemann Publications, edn 2, ISBN 0750645016 (2003).
M. Karuppaiya, E. Sasikumar, T. Viruthagiri and V. Vijayagopal, Chem. Eng. Commun., 196, 1425 (2009); doi:10.1080/00986440902938972.
S.B. Imandi, S.K. Karanam and H.R. Garapati, Adv. Biosci. Biotechnol., 1, 115 (2010); doi:10.4236/abb.2010.12016.
Q.M. Abdulaziz, A. Sarrani and Y.M. El-Naggar, Bot. Stud. (Taipei, Taiwan), 47, 167 (2006).
S.B. Imandi and G.H. Rao, Res. J. Microbiol., 2, 88 (2007); doi:10.3923/jm.2007.88.93.
K. Maruthai, V. Thangavelu and M. Kanagasabai, Int. J. Chem. Biol. Eng., 6, 108 (2012).
A.R. Padhiar and H.A. Modi, Int. J. Biotechnol. Res., 3, 59 (2013).
D. D'Amato, M.R. Corbo, M.A.D. Nobile and M. Sinigaglia, Int. J. Food Sci. Technol., 41, 1152 (2006); doi:10.1111/j.1365-2621.2005.01128.x.
S. Nikolic, L. Mojovic, M. Rakin and D. Pejin, Fuel, 88, 1602 (2009); doi:10.1016/j.fuel.2008.12.019.
S. Rousseau, D. Rouleau, L. Yerushalmi and R.C. Mayer, J. Chem. Technol. Biotechnol., 53, 285 (1992); doi:10.1002/jctb.280530309.
F. Ozcelik and Y. Denli, Gida, 24, 385 (1996).
M.J. Torija, G. Beltran, M. Novo, M. Poblet, J.M. Guillamón, A. Mas and N. Rozès, Int. J. Food Microbiol., 85, 127 (2003); doi:10.1016/S0168-1605(02)00506-8.
D.A. Bocchini, H.F. Alves-Prado, L.C. Baida, I.C. Roberto, E. Gomes and R. Da Silva, Process Biochem., 38, 727 (2002); doi:10.1016/S0032-9592(02)00207-8.
T.Z.M.N. Hajar, S. Zainal, O. Atikah and T. Elida, World Acad. Sci. Eng. Technol., 72, 111 (2012).
S. Ghosh, R. Chakraborty and U. Raychaudhuri, Int. Food Res. J., 19, 1633 (2012).