Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Sulfuric Acid Treatment and Calcination on Natural Zeolites of Indonesia
Corresponding Author(s) : Karna Wijaya
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
An activation of natural zeolite of Wonosari, Gunung Kidul, Indonesia has been done. Activation was applied by refluxing the zeolite in variation of the sulfuric acid concentration and calcination time. Calcination was applied using microwave of 2.45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and crystallinity characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity of the zeolite was analyzed using porosimetry method. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the amount of ammonia and pyridine adsorbed as well as the surface area. FTIR spectra and XRD patterns showed no fundamental changes in the structure of the natural zeolite, SEM, and TEM images were showing an increase in space or field. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 min, respectively each amounted to 0,8941 mmol/g of ammonia and 0,0375 mmol/g of pyridine with 251.00870 m2/g for surface area, 0.19129 m3/g of pore volume and 3.04829 nm of pore diameter.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Niwa, N. Katada and K. Okumura, Characterization and Design of Zeolite Catalysts, Springer, London (2010).
- F. Zaera, Catal. Lett., 142, 501 (2012); doi:10.1007/s10562-012-0801-9.
- G. Smith and F. Notheisz, Heterogeneous Catalysis in Organic Chemistry, Academic Press, New York, edn 1 (1999).
- S. Korichi, A. Elias, A. Mefti and A. Bensmaili, Appl. Clay Sci., 59-60, 76 (2012); doi:10.1016/j.clay.2012.01.020.
- M. Zendehdel, G. Cruciani and M. Dondi, J. Porous Mater., 19, 361 (2012); doi:10.1007/s10934-011-9482-9.
- I. Fatimah, K. Wijaya and K.H. Setyawan, Bul. Chem. Eng. Catal., 3, 9 (2008).
- T. Ohgushi, J. Porous Mater., 8, 23 (2001); doi:10.1023/A:1026518200875.
- Y. Akdeniz and S. Ulku, J. Porous Mater., 14, 55 (2007); doi:10.1007/s10934-006-9008-z.
- S.S. Bukhari, J. Behin, H. Kazemian and S. Rohani, Fuel, 140, 250 (2015); doi:10.1016/j.fuel.2014.09.077.
- D. Barthomeuf, Mater. Chem. Phys., 17, 49 (1987); doi:10.1016/0254-0584(87)90048-4.
- C. Belver, M.A. Bañares Muñoz and M.A. Vicente, Chem. Mater., 14, 2033 (2002); doi:10.1021/cm0111736.
- W.E. Farneth and J.N. Gorte, Chem. Rev., 95, 615 (1995); doi:10.1021/cr00035a007.
References
M. Niwa, N. Katada and K. Okumura, Characterization and Design of Zeolite Catalysts, Springer, London (2010).
F. Zaera, Catal. Lett., 142, 501 (2012); doi:10.1007/s10562-012-0801-9.
G. Smith and F. Notheisz, Heterogeneous Catalysis in Organic Chemistry, Academic Press, New York, edn 1 (1999).
S. Korichi, A. Elias, A. Mefti and A. Bensmaili, Appl. Clay Sci., 59-60, 76 (2012); doi:10.1016/j.clay.2012.01.020.
M. Zendehdel, G. Cruciani and M. Dondi, J. Porous Mater., 19, 361 (2012); doi:10.1007/s10934-011-9482-9.
I. Fatimah, K. Wijaya and K.H. Setyawan, Bul. Chem. Eng. Catal., 3, 9 (2008).
T. Ohgushi, J. Porous Mater., 8, 23 (2001); doi:10.1023/A:1026518200875.
Y. Akdeniz and S. Ulku, J. Porous Mater., 14, 55 (2007); doi:10.1007/s10934-006-9008-z.
S.S. Bukhari, J. Behin, H. Kazemian and S. Rohani, Fuel, 140, 250 (2015); doi:10.1016/j.fuel.2014.09.077.
D. Barthomeuf, Mater. Chem. Phys., 17, 49 (1987); doi:10.1016/0254-0584(87)90048-4.
C. Belver, M.A. Bañares Muñoz and M.A. Vicente, Chem. Mater., 14, 2033 (2002); doi:10.1021/cm0111736.
W.E. Farneth and J.N. Gorte, Chem. Rev., 95, 615 (1995); doi:10.1021/cr00035a007.