Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Performance of Graphene/Activated Carbon Based Electric Double Layer Supercapacitors
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
We report a facile and environmental friendly strategy for the fabrication of porous graphene/activated carbon (graphene/AC) composites through chemical activation technique by using Li2CO3. The activation process was accomplished by using a pressure dye round by heating mantle at 450 °C for 12 h. The carbonates were considered to decompose under high pressure and temperature in graphene network to produce a porous two-dimensional graphene/activated carbon network. The structures and the properties of graphene/activated carbon composites have been characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic charge-discharge test. Electrochemical test reveals that the graphene/activated carbon composite has stable capacitance performance at charge-discharge current density of 0.3 A g-1 and excellent capacity retention.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York (1999).
- K. Ullah, S. Ye, L. Zhu, Z.D. Meng, S. Sarkar and W.C. Oh, Mater. Sci. Eng. B, 180, 20 (2014); doi:10.1016/j.mseb.2013.10.014.
- G. Yu, X. Xie, L. Pan, Z. Bao and Y. Cui, Nano Energy, 2, 213 (2013); doi:10.1016/j.nanoen.2012.10.006.
- H. Jiang, P.S. Lee and C. Li, Environ. Sci., 6, 41 (2013).
- S. Park and R.S. Ruoff, Nat. Nanotechnol., 4, 217 (2009); doi:10.1038/nnano.2009.58.
- J.N. Coleman, Adv. Funct. Mater., 19, 3680 (2009); doi:10.1002/adfm.200901640.
- K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho and W.-C. Oh, Ultrason. Sonochem., 21, 1849 (2014); doi:10.1016/j.ultsonch.2014.04.016.
- D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010); doi:10.1039/B917103G.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
- S. Sarangapani, B.V. Tilak and C.P. Chen, J. Electrochem. Soc., 143, 3791 (1996); doi:10.1149/1.1837291.
- Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano, 4, 4324 (2010); doi:10.1021/nn101187z.
- Y. Meng, K. Wang, Y. Zhang and Z. Wei, Adv. Mater., 25, 6985 (2013); doi:10.1002/adma.201303529.
- N. Ashok Kumar and J.-B. Baek, Chem. Commun., 50, 6298 (2014); doi:10.1039/c4cc01049c.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
- J.S. Im, S.J. Park and Y.S. Lee, J. Colloid Interf. Sci., 314, 32 (2007); doi:10.1016/j.jcis.2007.05.033.
- B. Fang, Y.Z. Wei, K. Suzuki and M. Kumagai, Electrochim. Acta, 50, 3616 (2005); doi:10.1016/j.electacta.2004.12.032.
- D. Tashima, K. Kurosawatsu, M. Uota, T. Karashima, M. Otsubo, C. Honda and Y.M. Sung, Thin Solid Films, 515, 4234 (2007); doi:10.1016/j.tsf.2006.02.043.
- C. Lei, F. Markoulidis, Z. Ashitaka and C. Lekakou, Electrochim. Acta, 92, 183 (2013); doi:10.1016/j.electacta.2012.12.092.
- P.L. Taberna, C. Portet and P. Simon, Appl. Phys. A, Mater. Sci. Process., 82, 639 (2006); doi:10.1007/s00339-005-3404-0.
- F. Kim, L.J. Cote and J. Huang, Adv. Mater., 22, 1954 (2010); doi:10.1002/adma.200903932.
- J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson and J. Huang, ACS Nano, 5, 8943 (2011); doi:10.1021/nn203115u.
- A.S. Balankin, I.C. Silva, O.A. Martinez and O.S. Huerta, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 75, 051117 (2007); doi:10.1103/PhysRevE.75.051117.
- G.A. Vliegenthart and G. Gompper, Nat. Mater., 5, 216 (2006); doi:10.1038/nmat1581.
- K. Ullah, S. Ye, L. Zhu, S.-G. Kim, B.-J. Lee, E.-H. Yoon, Y.-R. Kim, B.-S. Kim and W.-C. Oh, Asian J. Chem., 27, 2260 (2015); doi:10.14233/ajchem.2015.18721.
- M.J. Bleda-Martinez, C. Peng, S. Zhang, G.Z. Chen, E. Morallon and D. Cazorla-Amorós, J. Electrochem. Soc., 155, A672 (2008); doi:10.1149/1.2956969.
References
B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York (1999).
K. Ullah, S. Ye, L. Zhu, Z.D. Meng, S. Sarkar and W.C. Oh, Mater. Sci. Eng. B, 180, 20 (2014); doi:10.1016/j.mseb.2013.10.014.
G. Yu, X. Xie, L. Pan, Z. Bao and Y. Cui, Nano Energy, 2, 213 (2013); doi:10.1016/j.nanoen.2012.10.006.
H. Jiang, P.S. Lee and C. Li, Environ. Sci., 6, 41 (2013).
S. Park and R.S. Ruoff, Nat. Nanotechnol., 4, 217 (2009); doi:10.1038/nnano.2009.58.
J.N. Coleman, Adv. Funct. Mater., 19, 3680 (2009); doi:10.1002/adfm.200901640.
K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho and W.-C. Oh, Ultrason. Sonochem., 21, 1849 (2014); doi:10.1016/j.ultsonch.2014.04.016.
D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010); doi:10.1039/B917103G.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
S. Sarangapani, B.V. Tilak and C.P. Chen, J. Electrochem. Soc., 143, 3791 (1996); doi:10.1149/1.1837291.
Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano, 4, 4324 (2010); doi:10.1021/nn101187z.
Y. Meng, K. Wang, Y. Zhang and Z. Wei, Adv. Mater., 25, 6985 (2013); doi:10.1002/adma.201303529.
N. Ashok Kumar and J.-B. Baek, Chem. Commun., 50, 6298 (2014); doi:10.1039/c4cc01049c.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
J.S. Im, S.J. Park and Y.S. Lee, J. Colloid Interf. Sci., 314, 32 (2007); doi:10.1016/j.jcis.2007.05.033.
B. Fang, Y.Z. Wei, K. Suzuki and M. Kumagai, Electrochim. Acta, 50, 3616 (2005); doi:10.1016/j.electacta.2004.12.032.
D. Tashima, K. Kurosawatsu, M. Uota, T. Karashima, M. Otsubo, C. Honda and Y.M. Sung, Thin Solid Films, 515, 4234 (2007); doi:10.1016/j.tsf.2006.02.043.
C. Lei, F. Markoulidis, Z. Ashitaka and C. Lekakou, Electrochim. Acta, 92, 183 (2013); doi:10.1016/j.electacta.2012.12.092.
P.L. Taberna, C. Portet and P. Simon, Appl. Phys. A, Mater. Sci. Process., 82, 639 (2006); doi:10.1007/s00339-005-3404-0.
F. Kim, L.J. Cote and J. Huang, Adv. Mater., 22, 1954 (2010); doi:10.1002/adma.200903932.
J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson and J. Huang, ACS Nano, 5, 8943 (2011); doi:10.1021/nn203115u.
A.S. Balankin, I.C. Silva, O.A. Martinez and O.S. Huerta, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 75, 051117 (2007); doi:10.1103/PhysRevE.75.051117.
G.A. Vliegenthart and G. Gompper, Nat. Mater., 5, 216 (2006); doi:10.1038/nmat1581.
K. Ullah, S. Ye, L. Zhu, S.-G. Kim, B.-J. Lee, E.-H. Yoon, Y.-R. Kim, B.-S. Kim and W.-C. Oh, Asian J. Chem., 27, 2260 (2015); doi:10.14233/ajchem.2015.18721.
M.J. Bleda-Martinez, C. Peng, S. Zhang, G.Z. Chen, E. Morallon and D. Cazorla-Amorós, J. Electrochem. Soc., 155, A672 (2008); doi:10.1149/1.2956969.