Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mononuclear Transition Metal Complexes Containing Quadridentate Schiff Bases as N2O2 Donors: Synthesis, Spectral Characterization Properties and Antibacterial Activity
Corresponding Author(s) : A.K. Ibrahim Sheriff
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
A qudridendate Schiff base ligand is synthesized by the condensation of active primary amine 2-amino-4-tert-butylphenol with b-diketone. It is found to be an N2O2 donor chelate. Quadridentate Schiff bases with an N2O2 donor have been widely studied for their ability to coordinate metal ions. Its complexes with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II), have been synthesized and characterized by micro analysis, molar conductivity, magnetic susceptibility studies, UV, IR, NMR, Mass spectral studies, cyclic voltammetry, ESR spectral studies, thermal behaviour and Powder X-ray diffraction studies have also been carried out. The DNA cleavage activities of the Schiff base and its complexes were monitored by agarose gel electrophoresis method in the presence of hydrogen peroxide and antibacterial activities have also been studied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.J. Mo and B.K. Koo, Bull. Korean Chem. Soc., 20, 1225 (1999).
- D. Sakthilatha and R. Rajavel, Res. J. Pharm. Biol. Chem. Sci., 4, 1114 (2013).
- P. Subbaraj, A. Ramu, N. Raman and J. Dharmaraja, J. Saudi Chem. Soc., 19, 207 (2014); doi:10.1016/j.jscs.2014.05.002.
- H. Han, W.-J. Ruan, X.-J. Zhao, G.-H. Hu and Z.-A. Zhu, Synth. React. Inorg. Met.-Org. Chem., 33, 1011 (2003); doi:10.1081/SIM-120021934.
- D. Sathis Kumar, S. Rajiv Gandhi and A.K. Ibrahim Sheriff, J. Chem. Pharm. Res., 7, 416 (2015).
- N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); doi:10.1007/BF02708270.
- A. Nagajothi, A. Kiruthika, S. Chitra and K. Parameswari, Int. J. Res. Pharm. Biomed. Sci., 3, 1768 (2012).
- M. Dey, J.P. Chinta, G.J. Long and C.P. Rao, Indian J. Chem., 48A, 1484 (2009).
- F. Shabani, L.A. Saghaforough and S. Ghammany, Bull. Chem. Soc. Ethiop., 24, 193 (2010).
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, Longman, London, edn 4 (1978).
- B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publisher, London (1972).
- D.H. Williams and I. Fleming, Spectroscopic Methods Inorganic Chemistry, McGraw Hill, London, edn 4 (1989).
- T. Premkumar and E.S. Govindarajan, J. Microbiol. Biotechnol., 22, 1105 (2006); doi:10.1007/s11274-006-9149-x.
- U. Kumar and S. Chandra, J. Saudi Chem. Soc., 15, 19 (2010); doi:10.1016/j.jscs.2010.08.003.
- M. Thomas, A. Kulandaisamy and A. Manohar, Int. J. ChemTech. Res., 4, 247 (2012).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, edn 5 (1997).
- R.S. Joseyphus and M. Sivasankaran Nair, Arabian J. Chem., 3, 195 (2010); doi:10.1016/j.arabjc.2010.05.001.
- D.P. Singh and V.B. Rana, Polyhedron, 14, 2901 (1995); doi:10.1016/0277-5387(95)00198-2.
- D.P. Singh, R. Kumar and J. Singh, Eur. J. Med. Chem., 44, 1731 (2009); doi:10.1016/j.ejmech.2008.03.007.
- R. Shakru, N.J.P. Subhashini and K. Sathish Kumar, J. Chem. Pharm. Res., 2, 38 (2010).
- A.P. Mishra, N. Sharma and R.K. Jain, Open J. Synth. Theory Appl., 2, 56 (2013); doi:10.4236/ojsta.2013.22007.
- Z. Shirin and R.M. Mukherjee, Polyhedron, 11, 2625 (1992); doi:10.1016/S0277-5387(00)80232-6.
- K. Mounika, B. Anupama, J. Pragathi and C. Gyanakumari, J. Sci. Res., 2, 513 (2010).
- A. Bottcher, T. Takeuchi, K.I. Hardcastle, T.J. Meade, H.B. Gray, D. Cwikel, M. Kapon and Z. Dori, Inorg. Chem., 36, 2498 (1997); doi:10.1021/ic961146v.
- B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Pub. Co. (1978).
- M. Pitie and G. Pratviel, Chem. Rev., 110, 1018 (2010); doi:10.1021/cr900247m.
- P. Subramanian and B. Muthulakshmi, J. Pharm. Pharm. Sci., 2, 5667 (2013).
- A. Nagajothi, A.Kiruthika, S. Chitra and K. Parameswari, Res. J. Chem. Sci., 3, 35 (2013).
- J.H. Pandya, R.N. Jadeja and K.J. Ganatra, J. Saudi Chem. Soc., 18, 190 (2014); doi:10.1016/j.jscs.2011.06.010.
- A. Cukurovali, I. Yilmaz, S. Gur and C. Kazaz, Eur. J. Med. Chem., 41, 201 (2006); doi:10.1016/j.ejmech.2005.01.013.
References
S.J. Mo and B.K. Koo, Bull. Korean Chem. Soc., 20, 1225 (1999).
D. Sakthilatha and R. Rajavel, Res. J. Pharm. Biol. Chem. Sci., 4, 1114 (2013).
P. Subbaraj, A. Ramu, N. Raman and J. Dharmaraja, J. Saudi Chem. Soc., 19, 207 (2014); doi:10.1016/j.jscs.2014.05.002.
H. Han, W.-J. Ruan, X.-J. Zhao, G.-H. Hu and Z.-A. Zhu, Synth. React. Inorg. Met.-Org. Chem., 33, 1011 (2003); doi:10.1081/SIM-120021934.
D. Sathis Kumar, S. Rajiv Gandhi and A.K. Ibrahim Sheriff, J. Chem. Pharm. Res., 7, 416 (2015).
N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); doi:10.1007/BF02708270.
A. Nagajothi, A. Kiruthika, S. Chitra and K. Parameswari, Int. J. Res. Pharm. Biomed. Sci., 3, 1768 (2012).
M. Dey, J.P. Chinta, G.J. Long and C.P. Rao, Indian J. Chem., 48A, 1484 (2009).
F. Shabani, L.A. Saghaforough and S. Ghammany, Bull. Chem. Soc. Ethiop., 24, 193 (2010).
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, Longman, London, edn 4 (1978).
B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publisher, London (1972).
D.H. Williams and I. Fleming, Spectroscopic Methods Inorganic Chemistry, McGraw Hill, London, edn 4 (1989).
T. Premkumar and E.S. Govindarajan, J. Microbiol. Biotechnol., 22, 1105 (2006); doi:10.1007/s11274-006-9149-x.
U. Kumar and S. Chandra, J. Saudi Chem. Soc., 15, 19 (2010); doi:10.1016/j.jscs.2010.08.003.
M. Thomas, A. Kulandaisamy and A. Manohar, Int. J. ChemTech. Res., 4, 247 (2012).
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, edn 5 (1997).
R.S. Joseyphus and M. Sivasankaran Nair, Arabian J. Chem., 3, 195 (2010); doi:10.1016/j.arabjc.2010.05.001.
D.P. Singh and V.B. Rana, Polyhedron, 14, 2901 (1995); doi:10.1016/0277-5387(95)00198-2.
D.P. Singh, R. Kumar and J. Singh, Eur. J. Med. Chem., 44, 1731 (2009); doi:10.1016/j.ejmech.2008.03.007.
R. Shakru, N.J.P. Subhashini and K. Sathish Kumar, J. Chem. Pharm. Res., 2, 38 (2010).
A.P. Mishra, N. Sharma and R.K. Jain, Open J. Synth. Theory Appl., 2, 56 (2013); doi:10.4236/ojsta.2013.22007.
Z. Shirin and R.M. Mukherjee, Polyhedron, 11, 2625 (1992); doi:10.1016/S0277-5387(00)80232-6.
K. Mounika, B. Anupama, J. Pragathi and C. Gyanakumari, J. Sci. Res., 2, 513 (2010).
A. Bottcher, T. Takeuchi, K.I. Hardcastle, T.J. Meade, H.B. Gray, D. Cwikel, M. Kapon and Z. Dori, Inorg. Chem., 36, 2498 (1997); doi:10.1021/ic961146v.
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Pub. Co. (1978).
M. Pitie and G. Pratviel, Chem. Rev., 110, 1018 (2010); doi:10.1021/cr900247m.
P. Subramanian and B. Muthulakshmi, J. Pharm. Pharm. Sci., 2, 5667 (2013).
A. Nagajothi, A.Kiruthika, S. Chitra and K. Parameswari, Res. J. Chem. Sci., 3, 35 (2013).
J.H. Pandya, R.N. Jadeja and K.J. Ganatra, J. Saudi Chem. Soc., 18, 190 (2014); doi:10.1016/j.jscs.2011.06.010.
A. Cukurovali, I. Yilmaz, S. Gur and C. Kazaz, Eur. J. Med. Chem., 41, 201 (2006); doi:10.1016/j.ejmech.2005.01.013.