Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accelerated Production of Oxygen-Insensitive Azoreductase from Mutant Pseudomonas Species for Degradation Azo Dyes under Aerobic Condition
Corresponding Author(s) : Arunkumar Mani
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
Bacteria producing an oxygen insensitive intracellular azoreductase were isolated from a dye contaminated area and identified as a Pseudomonas species B1 by 16s rRNA sequencing. Maximum azoreductase production (0.39 U/mL) was observed in the mutant strain within 30 h of incubation under optimized conditions at pH 6.5, temperature 35 °C, glucose 2 %, sodium nitrate 1 % and 2 % of inoculum concentration. Azoreductase was purified by ammonium precipitation method and followed by anion exchange chromatography. Mutant Pseudomonas species B1 showed 2-fold increased level of azoreductase production and purified up to 94-fold with a recovery of 18 %. Native PAGE analysis revealed that the purified enzyme was a monomer with a molecular weight of 29 kDa. The Km and Vmax values were 0.09 mM and 6.7 U mg–1 of protein for NADH and 0.04 mM and 4.7 U mg–1 of protein for naphthol blue black, respectively. Furthermore, the purified enzyme could effectively degrade 78 % of naphthol blue black under aerobic conditions, as monitored by UV-visible, FTIR-spectroscopy, HPLC and GCMS. Phytotoxicity and microbial toxicity assays showed that the degradation products of naphthol blue black were less toxic than the dye itself.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.T. Chung Jr., S.E. Stevens and C.E. Cerniglia, Crit. Rev. Microbiol., 18, 175 (1992); doi:10.3109/10408419209114557.
- A. Stolz, Appl. Microbiol. Biotechnol., 56, 69 (2001); doi:10.1007/s002530100686.
- H. Chen, Curr. Protein Pept. Sci., 7, 101 (2006); doi:10.2174/138920306776359786.
- J. Feng, T.M. Heinze, H. Xu, C.E. Cerniglia and H. Chen, Protein Pept. Lett., 17, 578 (2010); doi:10.2174/092986610791112701.
- R. Anliker, Ecotoxicol. Environ. Saf., 3, 59 (1979); doi:10.1016/0147-6513(79)90060-5.
- D. Cui, G. Li, D. Zhao, X. Gu, C. Wang and M. Zhao, J. Hazard. Mater., 221-222, 185 (2012); doi:10.1016/j.jhazmat.2012.04.032.
- H.S. Lade, T.R. Waghmode, A.A. Kadam and S.P. Govindwar, Int. Biodeter. Biodegrad., 72, 94 (2012); doi:10.1016/j.ibiod.2012.06.001.
- A.A. Telke, D.C. Kalyani, V.V. Dawkar and S.P. Govindwar, J. Hazard. Mater., 172, 298 (2009); doi:10.1016/j.jhazmat.2009.07.008.
- A. Ryan, N. Laurieri, I. Westwood, C.J. Wang, E. Lowe and E. Sim, J. Mol. Biol., 400, 24 (2010); doi:10.1016/j.jmb.2010.04.023.
- W. Lang, S. Sirisansaneeyakul, L. Ngiwsara, S. Mendes, L.O. Martins, M. Okuyama and A. Kimura, Bioresour. Technol., 150, 298 (2013); doi:10.1016/j.biortech.2013.09.124.
- J. Feng, O. Kweon, H. Xu, C.E. Cerniglia and H. Chen, Arch. Biochem. Biophys., 520, 99 (2012); doi:10.1016/j.abb.2012.02.010.
- K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, Mol. Biol. Evol., 28, 2731 (2011); doi:10.1093/molbev/msr121.
- N. Pfennig, Arch. Microbiol., 100, 197 (1974); doi:10.1007/BF00446317.
- C.V. Nachiyar and G.S. Rajakumar, Enzyme Microb. Technol., 36, 503 (2005); doi:10.1016/j.enzmictec.2004.11.015.
- O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biochem., 193, 265 (1951).
- S.A. Misal, D.P. Lingojwar, R.M. Shinde and K.R. Gawai, Process Biochem., 46, 1264 (2011); doi:10.1016/j.procbio.2011.02.013.
- R.G. Saratale, G.D. Saratale, J.S. Chang and S.P. Govindwar, Bioresour. Technol., 100, 3897 (2009); doi:10.1016/j.biortech.2009.03.051.
- S. Nouren and H.N. Bhatti, Biochem. Eng., 95, 9 (2015); doi:10.1016/j.bej.2014.11.021.
- N. Saitou and M. Nei, Mol. Biol. Evol., 4, 406 (1987).
- K. Tamura, M. Nei and S. Kumar, Proc. Natl. Acad. Sci. USA, 101, 11030 (2004); doi:10.1073/pnas.0404206101.
- S. Dhawan, R. Lal and R.C. Kuhad, Lett. Appl. Microbiol., 36, 64 (2003); doi:10.1046/j.1472-765X.2003.01267.x.
- B. Naveena, K.P. Gopinath, P. Sakthiselvan and N. Partha, Bioresour. Technol., 111, 417 (2012); doi:10.1016/j.biortech.2012.02.056.
- T. Zimmermann, F. Gasser, H.G. Kulla and T. Leisinger, Arch. Microbiol., 138, 37 (1984); doi:10.1007/BF00425404.
- D.K. Ghosh, S. Ghosh, P. Sadhukhan, A. Mandal and J. Chauduri, Indian J. Exp. Biol., 31, 951 (1993).
- T.L. Hu, Water Sci. Technol., 43, 261 (2001).
- J. Maier, A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo and M. Gubitz, Appl. Environ. Microbiol., 70, 837 (2004); doi:10.1128/AEM.70.2.837-844.2004.
- K.P. Gopinath, S. Murugesan, J. Abraham and K. Muthukumar, Bioresour. Technol., 100, 6295 (2009); doi:10.1016/j.biortech.2009.07.043.
- E. Torres, I. Bustos-Jaimes and S. Le Borgne, Appl. Catal. B, 46, 1 (2003); doi:10.1016/S0926-3373(03)00228-5.
- M.S. Kim, D.H. Kim and J. Cha, Int. J. Hydrogen Energy, 37, 14055 (2012); doi:10.1016/j.ijhydene.2012.06.085.
- R. Mazumder, J.R. Logan, A.T. Mikell Jr and S.W. Hooper, Industrial Microbiol. Biotechnol., 23, 476 (1999); doi:10.1038/sj.jim.2900734.
- G. Liu, J. Zhou, J. Wang, M. Zhou, H. Lu and R. Jin, Bioresour. Technol., 100, 2791 (2009); doi:10.1016/j.biortech.2008.12.040.
- R. Russ, J. Rau and A. Stolz, Appl. Environ. Microbiol., 66, 1429 (2000); doi:10.1128/AEM.66.4.1429-1434.2000.
- S. Blumel, H.J. Knackmuss and A. Stolz, Appl. Environ. Microbiol., 68, 3948 (2002); doi:10.1128/AEM.68.8.3948-3955.2002.
- E. Idaka, T. Ogawa and H. Horitsu, Environ. Contam. Toxicol., 39, 108 (1987); doi:10.1007/BF01691797.
- S.W. Hooper, Proteases in Biology and Medicine, In: Essays in Biochemistry, Portland Press, vol. 25, pp. 169-182 (1994).
- M. Nakanishi, C. Yatome, N. Ishida and Y. Kitade, J. Biol. Chem., 276, 46394 (2001); doi:10.1074/jbc.M104483200.
References
K.T. Chung Jr., S.E. Stevens and C.E. Cerniglia, Crit. Rev. Microbiol., 18, 175 (1992); doi:10.3109/10408419209114557.
A. Stolz, Appl. Microbiol. Biotechnol., 56, 69 (2001); doi:10.1007/s002530100686.
H. Chen, Curr. Protein Pept. Sci., 7, 101 (2006); doi:10.2174/138920306776359786.
J. Feng, T.M. Heinze, H. Xu, C.E. Cerniglia and H. Chen, Protein Pept. Lett., 17, 578 (2010); doi:10.2174/092986610791112701.
R. Anliker, Ecotoxicol. Environ. Saf., 3, 59 (1979); doi:10.1016/0147-6513(79)90060-5.
D. Cui, G. Li, D. Zhao, X. Gu, C. Wang and M. Zhao, J. Hazard. Mater., 221-222, 185 (2012); doi:10.1016/j.jhazmat.2012.04.032.
H.S. Lade, T.R. Waghmode, A.A. Kadam and S.P. Govindwar, Int. Biodeter. Biodegrad., 72, 94 (2012); doi:10.1016/j.ibiod.2012.06.001.
A.A. Telke, D.C. Kalyani, V.V. Dawkar and S.P. Govindwar, J. Hazard. Mater., 172, 298 (2009); doi:10.1016/j.jhazmat.2009.07.008.
A. Ryan, N. Laurieri, I. Westwood, C.J. Wang, E. Lowe and E. Sim, J. Mol. Biol., 400, 24 (2010); doi:10.1016/j.jmb.2010.04.023.
W. Lang, S. Sirisansaneeyakul, L. Ngiwsara, S. Mendes, L.O. Martins, M. Okuyama and A. Kimura, Bioresour. Technol., 150, 298 (2013); doi:10.1016/j.biortech.2013.09.124.
J. Feng, O. Kweon, H. Xu, C.E. Cerniglia and H. Chen, Arch. Biochem. Biophys., 520, 99 (2012); doi:10.1016/j.abb.2012.02.010.
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, Mol. Biol. Evol., 28, 2731 (2011); doi:10.1093/molbev/msr121.
N. Pfennig, Arch. Microbiol., 100, 197 (1974); doi:10.1007/BF00446317.
C.V. Nachiyar and G.S. Rajakumar, Enzyme Microb. Technol., 36, 503 (2005); doi:10.1016/j.enzmictec.2004.11.015.
O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biochem., 193, 265 (1951).
S.A. Misal, D.P. Lingojwar, R.M. Shinde and K.R. Gawai, Process Biochem., 46, 1264 (2011); doi:10.1016/j.procbio.2011.02.013.
R.G. Saratale, G.D. Saratale, J.S. Chang and S.P. Govindwar, Bioresour. Technol., 100, 3897 (2009); doi:10.1016/j.biortech.2009.03.051.
S. Nouren and H.N. Bhatti, Biochem. Eng., 95, 9 (2015); doi:10.1016/j.bej.2014.11.021.
N. Saitou and M. Nei, Mol. Biol. Evol., 4, 406 (1987).
K. Tamura, M. Nei and S. Kumar, Proc. Natl. Acad. Sci. USA, 101, 11030 (2004); doi:10.1073/pnas.0404206101.
S. Dhawan, R. Lal and R.C. Kuhad, Lett. Appl. Microbiol., 36, 64 (2003); doi:10.1046/j.1472-765X.2003.01267.x.
B. Naveena, K.P. Gopinath, P. Sakthiselvan and N. Partha, Bioresour. Technol., 111, 417 (2012); doi:10.1016/j.biortech.2012.02.056.
T. Zimmermann, F. Gasser, H.G. Kulla and T. Leisinger, Arch. Microbiol., 138, 37 (1984); doi:10.1007/BF00425404.
D.K. Ghosh, S. Ghosh, P. Sadhukhan, A. Mandal and J. Chauduri, Indian J. Exp. Biol., 31, 951 (1993).
T.L. Hu, Water Sci. Technol., 43, 261 (2001).
J. Maier, A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo and M. Gubitz, Appl. Environ. Microbiol., 70, 837 (2004); doi:10.1128/AEM.70.2.837-844.2004.
K.P. Gopinath, S. Murugesan, J. Abraham and K. Muthukumar, Bioresour. Technol., 100, 6295 (2009); doi:10.1016/j.biortech.2009.07.043.
E. Torres, I. Bustos-Jaimes and S. Le Borgne, Appl. Catal. B, 46, 1 (2003); doi:10.1016/S0926-3373(03)00228-5.
M.S. Kim, D.H. Kim and J. Cha, Int. J. Hydrogen Energy, 37, 14055 (2012); doi:10.1016/j.ijhydene.2012.06.085.
R. Mazumder, J.R. Logan, A.T. Mikell Jr and S.W. Hooper, Industrial Microbiol. Biotechnol., 23, 476 (1999); doi:10.1038/sj.jim.2900734.
G. Liu, J. Zhou, J. Wang, M. Zhou, H. Lu and R. Jin, Bioresour. Technol., 100, 2791 (2009); doi:10.1016/j.biortech.2008.12.040.
R. Russ, J. Rau and A. Stolz, Appl. Environ. Microbiol., 66, 1429 (2000); doi:10.1128/AEM.66.4.1429-1434.2000.
S. Blumel, H.J. Knackmuss and A. Stolz, Appl. Environ. Microbiol., 68, 3948 (2002); doi:10.1128/AEM.68.8.3948-3955.2002.
E. Idaka, T. Ogawa and H. Horitsu, Environ. Contam. Toxicol., 39, 108 (1987); doi:10.1007/BF01691797.
S.W. Hooper, Proteases in Biology and Medicine, In: Essays in Biochemistry, Portland Press, vol. 25, pp. 169-182 (1994).
M. Nakanishi, C. Yatome, N. Ishida and Y. Kitade, J. Biol. Chem., 276, 46394 (2001); doi:10.1074/jbc.M104483200.