Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Addition of Ethylene Glycol on Electrodeposition of Cobalt in 1-Ethyl-3-methylimidazolium Bromide-Cobalt Bromide Molten Salt
Corresponding Author(s) : Chang-Suk Han
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
Activities of the cobalt ionic species in the 1-ethyl-3-methylimidazolium bromide (EMIB)-CoBr2-ethylene glycol (EG) baths were calculated by the computer simulation method fitting the measured and calculated rest potential of cobalt and the relationships between the calculated activities and the results of the actual cobalt electrodeposits were considered. Smooth and metallic coloured cobalt deposits with 100 % of cathodic current efficiencies even at high current densities of 200-300 Am–2 were obtained from baths in which the activities of CoBr42– were dominant compared with those of CoBr3– and Br–. This suggests that CoBr42– is the effective cobalt ionic species for cobalt electrodeposition. At compositions where the activities of CoBr3– were relatively high, the dendritic deposits were obtained at the edge of the substrate. The reduction of CoBr3– causes the dendritic deposits. The appropriate amount of ethylene glycol addition to EMIB-CoBr2 bath promotes the formation of CoBr42– that forms the smooth cobalt deposits.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.C. Wang, F.R. He, G.K. Liu and Y.X. Tong, Acta Phys. Chim. Sin., 18, 732 (2002).
- Y. Zhang, Y. Tsushio, H. Enoki and E. Akiba, J. Alloys Comp., 393, 147 (2005); doi:10.1016/j.jallcom.2004.09.065.
- C.S. Han, C.H. Chun and S.O. Han, Korean J. Mater. Res., 19, 319 (2009); doi:10.3740/MRSK.2009.19.6.319.
- O.V. Kravchenko, L.G. Sevastyanova, S.A. Urvanov and B.M. Bulychev, Int. J. Hydrogen Energy, 39, 5522 (2014); doi:10.1016/j.ijhydene.2014.01.181.
- K. Vediappan and C.W. Lee, J. Nanosci. Nanotechnol., 10, 3440 (2010); doi:10.1166/jnn.2010.2329.
- S.J. Qiu, H.L. Chu, Y. Zhang, Y.N. Qi, L.X. Sun and F. Xu, J. Alloys Comp., 462, 392 (2008); doi:10.1016/j.jallcom.2007.08.072.
- Y. Zhang, Y. Tsushio, H. Enoki and E. Akiba, Mater. Sci. Forum, 475-479, 2453 (2005); doi:10.4028/www.scientific.net/MSF.475-479.2453.
- G. Torsi and G. Mamantov, Inorg. Chem., 11, 1439 (1972); doi:10.1021/ic50112a059.
- L.G. Boxall, H.L. Jones and R.A. Osteryoung, J. Electrochem. Soc., 120, 223 (1973); doi:10.1149/1.2403424.
- R.J. Gale and R.A. Osteryoung, Inorg. Chem., 18, 1603 (1979); doi:10.1021/ic50196a044.
- H. Ohno, Bull. Chem. Soc. Jpn., 79, 1665 (2006); doi:10.1246/bcsj.79.1665.
- J. Robinson and R.A. Osteryoung, J. Electrochem. Soc., 127, 122 (1980); doi:10.1149/1.2129601.
- J.P. Schoebrechts and B.P. Gilbert, J. Electrochem. Soc., 128, 2679 (1981); doi:10.1149/1.2127328.
- H. Hayashi, K. Uno, Z. Takehara and A. Katagiri, J. Electrochem. Soc., 140, 386 (1993); doi:10.1149/1.2221055.
- S. Takahashi, I. Saeki, K. Tanaka and H. Kanesashi, Nisshin Seikou Gihou, 60, 36 (1989).
- G. Ling and N. Koura, Denki Kagaku, 65, 149 (1997).
- N. Koura, M. Iwai, K. Veda and A. Suzuki, J. Surf. Finishing Soc. Jpn, 44, 439 (1993); doi:10.4139/sfj.44.439.
- N. Koura and M. Murase, J. Jpn Inst. Light Metals, 39, 333 (1989); doi:10.2464/jilm.39.333.
- R.B. Ellis, J. Electrochem. Soc., 113, 485 (1966); doi:10.1149/1.2424000.
References
J.C. Wang, F.R. He, G.K. Liu and Y.X. Tong, Acta Phys. Chim. Sin., 18, 732 (2002).
Y. Zhang, Y. Tsushio, H. Enoki and E. Akiba, J. Alloys Comp., 393, 147 (2005); doi:10.1016/j.jallcom.2004.09.065.
C.S. Han, C.H. Chun and S.O. Han, Korean J. Mater. Res., 19, 319 (2009); doi:10.3740/MRSK.2009.19.6.319.
O.V. Kravchenko, L.G. Sevastyanova, S.A. Urvanov and B.M. Bulychev, Int. J. Hydrogen Energy, 39, 5522 (2014); doi:10.1016/j.ijhydene.2014.01.181.
K. Vediappan and C.W. Lee, J. Nanosci. Nanotechnol., 10, 3440 (2010); doi:10.1166/jnn.2010.2329.
S.J. Qiu, H.L. Chu, Y. Zhang, Y.N. Qi, L.X. Sun and F. Xu, J. Alloys Comp., 462, 392 (2008); doi:10.1016/j.jallcom.2007.08.072.
Y. Zhang, Y. Tsushio, H. Enoki and E. Akiba, Mater. Sci. Forum, 475-479, 2453 (2005); doi:10.4028/www.scientific.net/MSF.475-479.2453.
G. Torsi and G. Mamantov, Inorg. Chem., 11, 1439 (1972); doi:10.1021/ic50112a059.
L.G. Boxall, H.L. Jones and R.A. Osteryoung, J. Electrochem. Soc., 120, 223 (1973); doi:10.1149/1.2403424.
R.J. Gale and R.A. Osteryoung, Inorg. Chem., 18, 1603 (1979); doi:10.1021/ic50196a044.
H. Ohno, Bull. Chem. Soc. Jpn., 79, 1665 (2006); doi:10.1246/bcsj.79.1665.
J. Robinson and R.A. Osteryoung, J. Electrochem. Soc., 127, 122 (1980); doi:10.1149/1.2129601.
J.P. Schoebrechts and B.P. Gilbert, J. Electrochem. Soc., 128, 2679 (1981); doi:10.1149/1.2127328.
H. Hayashi, K. Uno, Z. Takehara and A. Katagiri, J. Electrochem. Soc., 140, 386 (1993); doi:10.1149/1.2221055.
S. Takahashi, I. Saeki, K. Tanaka and H. Kanesashi, Nisshin Seikou Gihou, 60, 36 (1989).
G. Ling and N. Koura, Denki Kagaku, 65, 149 (1997).
N. Koura, M. Iwai, K. Veda and A. Suzuki, J. Surf. Finishing Soc. Jpn, 44, 439 (1993); doi:10.4139/sfj.44.439.
N. Koura and M. Murase, J. Jpn Inst. Light Metals, 39, 333 (1989); doi:10.2464/jilm.39.333.
R.B. Ellis, J. Electrochem. Soc., 113, 485 (1966); doi:10.1149/1.2424000.