Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Nitrogen Oxides from Exhaust Gas of Boilers via Aerobic Denitrifying Bacteria Using New Device
Corresponding Author(s) : Jiao Xu
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
In this paper, the removal efficiency of NOx by aerobic denitrifying bacteria in bio-filter and bio-trickling filter was described, respectively and the removal mechanism of NOx was explored. The result showed that the bio-trickling filter was more proper than the bio-filter when dealing with NOx. The new device-the combination of the bio-filter and bio-trickling filter was employed to test the application of aerobic denitrifying bacteria in the removal of NOx. Effects of the inlet concentration of NOx, empty bed residence time (EBRT) and liquid flow on the removal efficiency of NOx were investigated in the new device. And the removal efficiency of NOx up to 94.2 % was obtained at oxygen content of 13 %, inlet NOx concentration of 1100 mg/m3, nutrient fluid flow of 15 L/h and empty bed residence time of 35 s.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.A. Robertson and J.G. Kuenen, Arch. Microbiol., 139, 351 (1984); doi:10.1007/BF00408378.
- K. Skalska, J.S. Miller and S. Ledakowicz, Sci. Total Environ., 408, 3976 (2010); doi:10.1016/j.scitotenv.2010.06.001.
- M.S. Chou and J.H. Lin, J. Air Waste Manage. Assoc., 50, 502 (2000); doi:10.1080/10473289.2000.10464033.
- W. Liang, S. Huang, Y. Yang and R. Jiang, Bioresour. Technol., 125, 82 (2012); doi:10.1016/j.biortech.2012.08.111.
- Emission Standard of Air Pollutants for Thermal Power Plants, GB13223 (2011).
- M. Bradford, R. Grover and P. Paul, Chem. Eng. Prog., 98, 42 (2000).
- C.B. Wang, T.F. Yeh and H.K. Lin, J. Hazard. Mater., 92, 241 (2002); doi:10.1016/S0304-3894(01)00386-7.
- E.K. Pham and S.G. Chang, Nature, 369, 139 (1994); doi:10.1038/369139a0.
- B.N. Dasu, V. Deshmane, R. Shanmugasundram, C.-M. Lee and K.L. Sublette, Fuel, 72, 1705 (1993); doi:10.1016/0016-2361(93)90359-A.
- J.R. Woertz, K.A. Kinney and P.J.A. Szaniszlo, J. Air Waste Manage. Assoc., 51, 895 (2001); doi:10.1080/10473289.2001.10464321.
- Y. Jin, M.C. Veiga and C. Kennes, J. Chem. Technol. Biotechnol., 80, 483 (2005); doi:10.1002/jctb.1260.
- A.L. Stepanov and T.K. Korpela, Biotechnol. Appl. Biochem., 25, 97 (1997); doi:10.1111/j.1470-8744.1997.tb00420.x.
- S.P.P. Ottengraf, J.J.P. Meesters, A.H.C. Oever and H.R. Rozema, Bioprocess Eng., 1, 61 (1986); doi:10.1007/BF00387497.
- S.P.P. Ottengraf, Trends Biotechnol., 5, 132 (1987); doi:10.1016/0167-7799(87)90007-2.
- H. Hartmann, Korresp. Abfall., 5, 48 (1976).
- L.A. Robertson and J.G. Kuenen, Arch. Microbiol., 139, 351 (1984); doi:10.1007/BF00408378.
- T. Lukow and H. Diekmann, Biotechnol. Lett., 19, 1157 (1997); doi:10.1023/A:1018465232392.
- L.A. Robertson, Ed W.J. van Niel, R.A.M. Torremans and J.G. Kuenen, Appl. Environ. Microbiol., 54, 2812 (1988).
- L.A. Robertson, T. Dalsgaard, N.P. Revsbech and J.G. Kuenen, FEMS Microbiol. Ecol., 18, 113 (1995); doi:10.1111/j.1574-6941.1995.tb00168.x.
References
L.A. Robertson and J.G. Kuenen, Arch. Microbiol., 139, 351 (1984); doi:10.1007/BF00408378.
K. Skalska, J.S. Miller and S. Ledakowicz, Sci. Total Environ., 408, 3976 (2010); doi:10.1016/j.scitotenv.2010.06.001.
M.S. Chou and J.H. Lin, J. Air Waste Manage. Assoc., 50, 502 (2000); doi:10.1080/10473289.2000.10464033.
W. Liang, S. Huang, Y. Yang and R. Jiang, Bioresour. Technol., 125, 82 (2012); doi:10.1016/j.biortech.2012.08.111.
Emission Standard of Air Pollutants for Thermal Power Plants, GB13223 (2011).
M. Bradford, R. Grover and P. Paul, Chem. Eng. Prog., 98, 42 (2000).
C.B. Wang, T.F. Yeh and H.K. Lin, J. Hazard. Mater., 92, 241 (2002); doi:10.1016/S0304-3894(01)00386-7.
E.K. Pham and S.G. Chang, Nature, 369, 139 (1994); doi:10.1038/369139a0.
B.N. Dasu, V. Deshmane, R. Shanmugasundram, C.-M. Lee and K.L. Sublette, Fuel, 72, 1705 (1993); doi:10.1016/0016-2361(93)90359-A.
J.R. Woertz, K.A. Kinney and P.J.A. Szaniszlo, J. Air Waste Manage. Assoc., 51, 895 (2001); doi:10.1080/10473289.2001.10464321.
Y. Jin, M.C. Veiga and C. Kennes, J. Chem. Technol. Biotechnol., 80, 483 (2005); doi:10.1002/jctb.1260.
A.L. Stepanov and T.K. Korpela, Biotechnol. Appl. Biochem., 25, 97 (1997); doi:10.1111/j.1470-8744.1997.tb00420.x.
S.P.P. Ottengraf, J.J.P. Meesters, A.H.C. Oever and H.R. Rozema, Bioprocess Eng., 1, 61 (1986); doi:10.1007/BF00387497.
S.P.P. Ottengraf, Trends Biotechnol., 5, 132 (1987); doi:10.1016/0167-7799(87)90007-2.
H. Hartmann, Korresp. Abfall., 5, 48 (1976).
L.A. Robertson and J.G. Kuenen, Arch. Microbiol., 139, 351 (1984); doi:10.1007/BF00408378.
T. Lukow and H. Diekmann, Biotechnol. Lett., 19, 1157 (1997); doi:10.1023/A:1018465232392.
L.A. Robertson, Ed W.J. van Niel, R.A.M. Torremans and J.G. Kuenen, Appl. Environ. Microbiol., 54, 2812 (1988).
L.A. Robertson, T. Dalsgaard, N.P. Revsbech and J.G. Kuenen, FEMS Microbiol. Ecol., 18, 113 (1995); doi:10.1111/j.1574-6941.1995.tb00168.x.