Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction of Naphthalene Anhydride Derivative with Adenosine Triphosphate and the Catalytic Influence on Adenosine Triphosphate Hydrolysis
Corresponding Author(s) : Yanqing Ma
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
A new compound, 1,8-naphthalene diformate-L-histidine (L) was synthesized and characterized by elemental analysis, 1H NMR and 13C NMR. The interaction between 1,8-naphthalene diformate-L-histidine and adenosine triphosphate (ATP) has been studied by fluorescence titration experiment. The stability constant between 1,8-naphthalene diformate-L-histidine and ATP is 6.72 × 105 L mol-1. Furthermore, the catalysis of ligand (L) on ATP hydrolysis was also studied by molybdenum blue method. The optimum temperature is 40 °C and pH value is 4. The hydrolysis rate constant (Kobs) is 0.1218 h-1 when 1,8-naphthalene diformate-L-histidine is added. It is increased about 11.7 times comparing with the hydrolysis rate constants of ATP without the addition of 1,8-naphthalene diformate-L-histidine, 1.1041 × 10-2 h-1, in the same condition. A reasonable mechanism that occurs through an addition-elimination is proposed. These data provide a new role of 1,8-naphthalene diformate-L-histidine as a novel catalyst for ATP hydrolysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.W. Hosseini, J.M. Lehn, K.C. Jones, K.E. Plute, K.B. Mertes and M.P. Mertes, J. Am. Chem. Soc., 111, 6330 (1989); doi:10.1021/ja00198a051.
- M.L. Hir, Enzyme, 45, 194 (1991).
- C. Bergman, Y. Kashiwaya and R.L. Veech, J. Phys. Chem. B, 114, 16137 (2010); doi:10.1021/jp105723r.
- Y. Guo, Q. Ge, H. Lin, H.-K. Lin and S.-R. Zhu, Can. J. Chem., 82, 504 (2004); doi:10.1139/v04-003.
- J. Zhou and G. Lu, J. Coord. Chem., 64, 3441 (2011); doi:10.1080/00958972.2011.608162.
- C. Ma, H. Chen, R. Han, H. He and W. Zeng, Anal. Biochem., 429, 8 (2012); doi:10.1016/j.ab.2012.06.022.
- 7.C. Bazzicalupi, Biagini, Bencini, E. Faggi, C. Giorgi, I. Matera and B. Valtancoli, Chem. Commun., 39, 4087 (2006); doi:10.1039/b611031b.
- Y. Guo, Q. Ge, H. Lin, H.K. Lin, S.R. Zhu and C. Zhou, Biophys. Chem., 105, 119 (2003); doi:10.1016/S0301-4622(03)00140-6.
- Y. Tian-Ming, Y. Zhi-Feng, W. Li, G. Jin-Ying, Y. Si-De and S. Xian-Fa, Spectrochim. Acta A, 58, 3033 (2002); doi:10.1016/S1386-1425(02)00029-X.
- Y. Ma, G. Lu, Y. Li, S.-H. Liu and L. Xian, Chin. J. Chem., 25, 1253 (2007); doi:10.1002/cjoc.200790233.
- Y. Ma and G. Lu, Dalton Trans., 1081 (2008); doi:10.1039/b714667a.
- Y. Ma and G. Lu, J. Inorg. Organomet. Polym., 18, 435 (2008); doi:10.1007/s10904-008-9225-9.
- P. Kaczmarek, W. Szczepanik and M. Jeżowska-Bojczuk, Dalton. Trans., 3653 (2005); doi:10.1039/B508962J.
- H. Zong, P. Sun, C.A. Mirkin, A.G.M. Barrett and B.M. Hoffman, J. Phys. Chem., 113, 14892 (2009); doi:10.1021/jp905762p.
- H. Kozowski and, E. Matczak-Jon, Inorg. Chim. Acta, 32, 143 (1979); doi:10.1016/S0020-1693(00)91652-9.
- P. Yang, W. Zheng and Z. Hua, Inorg. Chem., 39, 5454 (2000); doi:10.1021/ic0000146.
- L. Cheng, Z. Zhu and Y. Ma, J. Shihezi Univ., 30, 745 (2012).
- M.E. Moragues, L.E. Santos-Figueroa, T. Ábalos, F. Sancenón and R. Martínez-Máñez, Tetrahedron. Lett., 53, 5110 (2012); doi:10.1016/j.tetlet.2012.07.039.
- P. Deschamps, P.P. Kulkarni, M. Gautam-Basak and B. Sarkar, Coord. Chem. Rev., 249, 895 (2005); doi:10.1016/j.ccr.2004.09.013.
- R. Bregier-Jarzebowska and L. Lomozik, Polyhedron, 29, 3294 (2010); doi:10.1016/j.poly.2010.09.005.
- R. Bregier-Jarzebowska, A. Gasowska, R. Jastrzab and L. Lomozik, J. Inorg. Biochem., 103, 1228 (2009); doi:10.1016/j.jinorgbio.2009.07.001.
- J. Zhou and G. Lu, Spectrochim. Acta A, 78, 1305 (2011); doi:10.1016/j.saa.2011.01.001.
- M.W. Hosseini, J.M. Lehn and M.P. Mertes, Helv. Chim. Acta, 66, 2454 (1983); doi:10.1002/hlca.19830660811.
- A. Amat, J. Rigau, R.W. Waynant, I.K. Ilev, J. Tomas and J.J. Anders, J. Photochem. Photobiol. B, 81, 26 (2005); doi:10.1016/j.jphotobiol.2005.05.012.
- M. Kubala, J. Teisinger, R. Ettrich, K. Hofbauerová, V. Kopecký, V. Baumruk, R. Krumscheid, J. Plášek, W. Schoner and E. Amler, Biochem., 42, 6446 (2003); doi:10.1021/bi034162u.
- E. Ishikawa and T. Yamase, Eur. J. Inorg. Chem., 16, 1917 (2013); doi:10.1002/ejic.201201164.
- P. Carmona, M. Molina and A. Rodríguez-Casado, Biophys. Chem., 119, 33 (2006); doi:10.1016/j.bpc.2005.08.006.
- L. Xian, S. Liu, Y. Ma and G. Lu, Spectrochim. Acta A, 67, 368 (2007); doi:10.1016/j.saa.2006.07.031.
- R. Ge, H. Lin, X. Xu, X. Sun, H. Lin, S. Zhu, B. Ji, F. Li and H. Wu, J. Inorg. Biochem., 98, 917 (2004); doi:10.1016/j.jinorgbio.2004.03.007.
- A. Gasowska, R. Jastrzab and L. Lomozik, J. Inorg. Biochem., 101, 1362 (2007); doi:10.1016/j.jinorgbio.2007.05.009.
References
M.W. Hosseini, J.M. Lehn, K.C. Jones, K.E. Plute, K.B. Mertes and M.P. Mertes, J. Am. Chem. Soc., 111, 6330 (1989); doi:10.1021/ja00198a051.
M.L. Hir, Enzyme, 45, 194 (1991).
C. Bergman, Y. Kashiwaya and R.L. Veech, J. Phys. Chem. B, 114, 16137 (2010); doi:10.1021/jp105723r.
Y. Guo, Q. Ge, H. Lin, H.-K. Lin and S.-R. Zhu, Can. J. Chem., 82, 504 (2004); doi:10.1139/v04-003.
J. Zhou and G. Lu, J. Coord. Chem., 64, 3441 (2011); doi:10.1080/00958972.2011.608162.
C. Ma, H. Chen, R. Han, H. He and W. Zeng, Anal. Biochem., 429, 8 (2012); doi:10.1016/j.ab.2012.06.022.
7.C. Bazzicalupi, Biagini, Bencini, E. Faggi, C. Giorgi, I. Matera and B. Valtancoli, Chem. Commun., 39, 4087 (2006); doi:10.1039/b611031b.
Y. Guo, Q. Ge, H. Lin, H.K. Lin, S.R. Zhu and C. Zhou, Biophys. Chem., 105, 119 (2003); doi:10.1016/S0301-4622(03)00140-6.
Y. Tian-Ming, Y. Zhi-Feng, W. Li, G. Jin-Ying, Y. Si-De and S. Xian-Fa, Spectrochim. Acta A, 58, 3033 (2002); doi:10.1016/S1386-1425(02)00029-X.
Y. Ma, G. Lu, Y. Li, S.-H. Liu and L. Xian, Chin. J. Chem., 25, 1253 (2007); doi:10.1002/cjoc.200790233.
Y. Ma and G. Lu, Dalton Trans., 1081 (2008); doi:10.1039/b714667a.
Y. Ma and G. Lu, J. Inorg. Organomet. Polym., 18, 435 (2008); doi:10.1007/s10904-008-9225-9.
P. Kaczmarek, W. Szczepanik and M. Jeżowska-Bojczuk, Dalton. Trans., 3653 (2005); doi:10.1039/B508962J.
H. Zong, P. Sun, C.A. Mirkin, A.G.M. Barrett and B.M. Hoffman, J. Phys. Chem., 113, 14892 (2009); doi:10.1021/jp905762p.
H. Kozowski and, E. Matczak-Jon, Inorg. Chim. Acta, 32, 143 (1979); doi:10.1016/S0020-1693(00)91652-9.
P. Yang, W. Zheng and Z. Hua, Inorg. Chem., 39, 5454 (2000); doi:10.1021/ic0000146.
L. Cheng, Z. Zhu and Y. Ma, J. Shihezi Univ., 30, 745 (2012).
M.E. Moragues, L.E. Santos-Figueroa, T. Ábalos, F. Sancenón and R. Martínez-Máñez, Tetrahedron. Lett., 53, 5110 (2012); doi:10.1016/j.tetlet.2012.07.039.
P. Deschamps, P.P. Kulkarni, M. Gautam-Basak and B. Sarkar, Coord. Chem. Rev., 249, 895 (2005); doi:10.1016/j.ccr.2004.09.013.
R. Bregier-Jarzebowska and L. Lomozik, Polyhedron, 29, 3294 (2010); doi:10.1016/j.poly.2010.09.005.
R. Bregier-Jarzebowska, A. Gasowska, R. Jastrzab and L. Lomozik, J. Inorg. Biochem., 103, 1228 (2009); doi:10.1016/j.jinorgbio.2009.07.001.
J. Zhou and G. Lu, Spectrochim. Acta A, 78, 1305 (2011); doi:10.1016/j.saa.2011.01.001.
M.W. Hosseini, J.M. Lehn and M.P. Mertes, Helv. Chim. Acta, 66, 2454 (1983); doi:10.1002/hlca.19830660811.
A. Amat, J. Rigau, R.W. Waynant, I.K. Ilev, J. Tomas and J.J. Anders, J. Photochem. Photobiol. B, 81, 26 (2005); doi:10.1016/j.jphotobiol.2005.05.012.
M. Kubala, J. Teisinger, R. Ettrich, K. Hofbauerová, V. Kopecký, V. Baumruk, R. Krumscheid, J. Plášek, W. Schoner and E. Amler, Biochem., 42, 6446 (2003); doi:10.1021/bi034162u.
E. Ishikawa and T. Yamase, Eur. J. Inorg. Chem., 16, 1917 (2013); doi:10.1002/ejic.201201164.
P. Carmona, M. Molina and A. Rodríguez-Casado, Biophys. Chem., 119, 33 (2006); doi:10.1016/j.bpc.2005.08.006.
L. Xian, S. Liu, Y. Ma and G. Lu, Spectrochim. Acta A, 67, 368 (2007); doi:10.1016/j.saa.2006.07.031.
R. Ge, H. Lin, X. Xu, X. Sun, H. Lin, S. Zhu, B. Ji, F. Li and H. Wu, J. Inorg. Biochem., 98, 917 (2004); doi:10.1016/j.jinorgbio.2004.03.007.
A. Gasowska, R. Jastrzab and L. Lomozik, J. Inorg. Biochem., 101, 1362 (2007); doi:10.1016/j.jinorgbio.2007.05.009.